Skip to main content
Log in

Controlling Spin Qubits in Quantum Dots

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We review progress on the spintronics proposal for quantum computing where the quantum bits (qubits) are implemented with electron spins. We calculate the exchange interaction of coupled quantum dots and present experiments, where the exchange coupling is measured via transport. Then, experiments on single spins on dots are described, where long spin relaxation times, on the order of a millisecond, are observed. We consider spin-orbit interaction as sources of spin decoherence and find theoretically that also long decoherence times are expected. Further, we describe the concept of spin filtering using quantum dots and show data of successful experiments. We also show an implementation of a read out scheme for spin qubits and define how qubits can be measured with high precision. Then, we propose new experiments, where the spin decoherence time and the Rabi oscillations of single electrons can be measured via charge transport through quantum dots. Finally, all these achievements have promising applications both in conventional and quantum information processing.

PACS: 03.67.Lx, 03.67.Mn, 73.23.Hk, 85.35.Be

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Prinz, Phys. Today 45(4), 58 (1995); Science 282, 1660 (1998).

    Google Scholar 

  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln´ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    PubMed  Google Scholar 

  3. Semiconductor Spintronics and Quantum Computation D. D. Awschalom, D. Loss, and N. Samarth (eds.) (Springer, Berlin, 2002).

  4. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).

    Google Scholar 

  5. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).

    Google Scholar 

  6. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997); J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998); D. D. Awschalom and J. M. Kikkawa, Phys. Today 52(6), 33 (1999).

    Google Scholar 

  7. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).

    Google Scholar 

  8. L. P. Kouwenhoven, G. Sch¨on, and L. L. Sohn, in Mesoscopic Electron Transport, Vol. 345 of NATO Advanced Study Institute, Series E, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Sch¨on (Kluwer Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  9. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998); Ph. 9701055.

    Google Scholar 

  10. B. E. Kane, Nature 393, 133 (1998).

    Google Scholar 

  11. S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys.Rev. Lett. 77, 3613 (1996).

    Google Scholar 

  12. J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308R (2003).

    Google Scholar 

  13. M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, Y. Feng, and Z. Wasilewski, Physica E 11, 35 (2001).

    Google Scholar 

  14. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995); C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Science 274, 1332 (1996).

    Google Scholar 

  15. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).

    Google Scholar 

  16. T. H. Oosterkamp, S. F. Godijn, M. J. Uilenreef, Y. V. Nazarov, N. C. van der Vaart, and L. P. Kouwenhoven, Phys. Rev. Lett. 80, 4951 (1998).

    Google Scholar 

  17. R. H. Blick, D. Pfannkuche, R. J. Haug, K. V. Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998); ibid. 81, 689 (1998); T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature 395, 873 (1998); I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776 (2000).

    Google Scholar 

  18. L. DiCarlo, H. J. Lynch, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, cond-mat/0311308 (2003).

  19. T. Hayashi, T. Fujisawa, H.-D. Cheong, Y.-H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003).

    Google Scholar 

  20. A. Steane, Rep. Prog. Phys. 61, 117 (1998).

    Google Scholar 

  21. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, New York, 2000).

    Google Scholar 

  22. D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

    Google Scholar 

  23. G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965 (2000); G. Burkard and D. Loss, Ch. 8 in Ref. 3.

    Google Scholar 

  24. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

    Google Scholar 

  25. G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Physica E 16, 99 (2003).

    Google Scholar 

  26. Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard, J. Levy, and D. D. Awschalom, Science 299, 1201 (2003).

    Google Scholar 

  27. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).

    Google Scholar 

  28. H.-A. Engel, D. Loss, Phys. Rev. Lett. 86, 4648 (2001); Phys. Rev. B 65, 195321 (2002).

    Google Scholar 

  29. H.-A. Engel, V. Golovach, D. Loss, L. M. K. Vandersypen, J. M. Elzerman, R. Hanson, and L. P. Kouwenhoven, cond-mat/0309023.

  30. L. S. Levitov and E. I. Rashba, Phys. Rev. B 67, 115324 (2003).

    Google Scholar 

  31. J. M. Elzerman, et al. (unpublished).

  32. X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).

    Google Scholar 

  33. D. M. Zumb¨ uhl, et al. (unpublished).

  34. V. N. Golovach and D. Loss, cond-mat/0308241.

  35. B. Su, V. J. Goldman, J. E. Cunningham, Phys. Rev. B 46, 7644 (1992); R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 71, 613 (1993); T. Schmidt, M. Tewordt, R. H. Blick, R. J. Haug, D. Pfannkuche, and K. V. Klitzing, Phys. Rev. B 51, 5570 (1995).

    Google Scholar 

  36. I. H. Chan, P. Fallahi, A. Vidan, R. M. Westervelt, M. Hanson, A. C. Gossard, condmat/ 0309205.

  37. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).

  38. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001).

    Google Scholar 

  39. S. I. Erlingsson and Y. V. Nazarov, Phys. Rev. B 66, 155327 (2002).

    Google Scholar 

  40. V. Golovach, A. Khaetskii, and D. Loss, cond-mat/0310655.

  41. A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).

    Google Scholar 

  42. A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. B 67, 195329 (2003).

    Google Scholar 

  43. T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Nature 419, 278 (2002).

    Google Scholar 

  44. R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003).

    Google Scholar 

  45. D. M. Zumb¨ uhl, J. B. Miller, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803 (2002). Note that their ?_SO is related to ours by ?SO =2?_SO.

    Google Scholar 

  46. A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I. Duru¨ oz, and J. S. Harris, Jr.,Phys. Rev. Lett. 83, 5090 (1999).

    Google Scholar 

  47. R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, I. T. Vink, and L. P. Kouwenhoven, cond-mat/0311414.

  48. J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299, 679 (2003).

    Google Scholar 

  49. R. M. Potok, J. A. Folk, C. M. Marcus, V. Umansky, M. Hanson, and A. C. Gossard, Phys. Rev. Lett. 91, 016802 (2003).

    Google Scholar 

  50. D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, NATO ASI Series B, Vol. 294 (Plenum Press, New York, 1992).

  51. R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Phys. Rev. Lett. 89, 266602 (2002).

    Google Scholar 

  52. B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).

    Google Scholar 

  53. M. Friesen, C. Tahan, R. Joynt, and M. A. Eriksson,Phys. Rev. Lett. 92, 037901 (2004).

    Google Scholar 

  54. M. Devoret, D. Estève, and Ch. Urbina, Nature (London) 360, 547 (1992).

    Google Scholar 

  55. M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70, 1311 (1993).

    Google Scholar 

  56. W. Lu, Z. Q. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature 423 (6938), 422 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, HA., Kouwenhoven, L.P., Loss, D. et al. Controlling Spin Qubits in Quantum Dots. Quantum Information Processing 3, 115–132 (2004). https://doi.org/10.1007/s11128-004-3103-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-3103-3

Navigation