Skip to main content
Log in

Effect of coulomb correlations on the two-level quantum dot susceptibility and polarization

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We revealed that the susceptibility and polarization of two-level quantum dot (QD) with Coulomb correlations between localized electrons weakly connected to the reservoirs are determined not only by the stationary electron filling numbers difference. We demonstrated that the susceptibility and polarization also depend on high-order correlation functions of electrons localized in the QD. We found that susceptibility and polarization can be controlled by applied bias voltage value, Coulomb correlations strength and Rabi frequency. We demonstrated that susceptibility and polarization amplitudes can significantly increase and even change the sign due to the tuning of the QD parameters. Careful analysis of correlated QD susceptibility, polarization and electron filling numbers (occupancies) difference in a wide range of applied bias voltage, Rabi frequency and Coulomb correlations value was performed in terms of pseudo-operators with constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998).

    Book  Google Scholar 

  2. W. G. van der Wiel, S. de Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002).

    Article  ADS  Google Scholar 

  3. R. W. Collins, C. C. Tsai, M. Hirose, F. Koch, and L. Brus, in Microcrystalline and Nanocrystalline Semiconductors, MRS Symp. Proc., Vol. 358 (Materials Research Society, Pittsburgh, 1995).

  4. T. Takagahara, Phys. Rev. B 39, 10206 (1989).

    Article  ADS  Google Scholar 

  5. V. Colvin, M. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).

    Article  ADS  Google Scholar 

  6. A. N. Vamivakas, C.-Y. Lu, and C. Matthiesen, Nature Lett. 467, 297 (2010).

    Article  ADS  Google Scholar 

  7. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, Science 311, 636 (2006).

    Article  ADS  Google Scholar 

  8. G. Muñoz-Matutano, M. Royo, J. I. Climente, J. Canet- Ferrer, D. Fuster, P. Alonso-González, I. Fernández-Martnez, J. Martínez-Pastor, Y. González, L. González, F. Briones, and B. Alén, Phys. Rev. B 84, 041308(R) (2011).

    Article  ADS  Google Scholar 

  9. K. Kikoin and Y. Avishai, Phys. Rev. B 65, 115329 (2002).

    Article  ADS  Google Scholar 

  10. Y. Goldin and Y. Avishai, Phys. Rev. B 61, 16750 (2000).

    Article  ADS  Google Scholar 

  11. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, JETP Lett. 94, 390 (2011).

    Article  ADS  Google Scholar 

  12. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, J. Exp. Theor. Phys. 115, 141 (2012).

    Article  ADS  Google Scholar 

  13. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, Eur. Phys. J. B 85, 410 (2012).

    Article  ADS  Google Scholar 

  14. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature 395, 873 (1998).

    Article  ADS  Google Scholar 

  15. C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Science 274, 1332 (1996).

    Article  ADS  Google Scholar 

  16. I. Rotter and A. F. Sadreev, Phys. Rev. E 71, 036227 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  17. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 168, 36 (2013).

    Article  ADS  Google Scholar 

  18. P. A. Orellana, G. A. Lara, and E. V. Anda, Phys. Rev. B 65, 155317 (2002).

    Article  ADS  Google Scholar 

  19. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Lett. 58, 1256 (1987).

    Article  ADS  Google Scholar 

  20. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 152, 1545 (2012).

    Article  ADS  Google Scholar 

  21. G. E. Murgida, D. A. Wisniacki, and P. I. Tamborenea, Phys. Rev. Lett. 99, 036806 (2007).

    Article  ADS  Google Scholar 

  22. T. Kataoka, T. Tokizaki, and A. Nakamura, Phys. Rev. B 48, 2815 (1993).

    Article  ADS  Google Scholar 

  23. A. Putaja and E. Rasanen, Phys. Rev. B 82, 165336 (2010).

    Article  ADS  Google Scholar 

  24. L. Saelen, R. Nepstad, I. Degani, and J. P. Hansen, Phys. Rev. Lett. 100, 046805 (2008).

    Article  ADS  Google Scholar 

  25. R. J. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  26. P. E. Lippens and M. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Article  ADS  Google Scholar 

  27. L. W. Wang and A. Zunger, Phys. Rev. B 53, 9579 (1996).

    Article  ADS  Google Scholar 

  28. S. V. Nair and T. Takagahara, Phys. Rev. B 55, 5153 (1997).

    Article  ADS  Google Scholar 

  29. S. Glutsch, D. S. Chemla, and F. Bechstedt, Phys. Rev. B 54, 11592 (1996).

    Article  ADS  Google Scholar 

  30. P. Coleman, Phys. Rev. B 29, 3035 (1984).

    Article  ADS  Google Scholar 

  31. P. Coleman, Phys. Rev. B 35, 5072 (1987).

    Article  ADS  Google Scholar 

  32. N. S. Wingreen and Y. Meir, Phys. Rev. Lett. 49, 040 (1994).

    Google Scholar 

  33. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 199, 33 (2014).

    Article  ADS  Google Scholar 

  34. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, JETP Lett. 100, 265 (2014).

    Article  ADS  Google Scholar 

  35. S. Amaha, W. Izumida, T. Hatano, S. Teraoka, S. Tarucha, J. A. Gupta, and D. G. Austing, Phys. Rev. Lett. 110, 016803 (2013).

    Article  ADS  Google Scholar 

  36. J. Fransson, Phys. Rev. B 69, 201304 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N.S., Mantsevich, V.N. & Arseyev, P.I. Effect of coulomb correlations on the two-level quantum dot susceptibility and polarization. Jetp Lett. 102, 536–543 (2015). https://doi.org/10.1134/S0021364015200096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015200096

Keywords

Navigation