Skip to main content
Log in

Hot and cold fusion reactions leading to the same superheavy evaporation residue

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Excitation functions are predicted for the production of isotopes of a superheavy nucleus with charge number \(Z=112\) in the \((2-5)n\)-evaporation channels of the complete fusion reactions \(^{48}\)Ca+\(^{233,235}\)U for future experiments. The calculated production cross section of the \(^{277}\)Cn isotope in the hot fusion reaction \(^{48}\)Ca+\(^{233}\)U is compared with the experimental one in the cold fusion reaction \(^{70}\)Zn+\(^{208}\)Pb. The strong correlation between the fusion probability and asymmetry in the entrance reaction channel is revealed. The possibility of filling the gap between the isotopes of superheavy nuclei with \(Z=112\) produced in cold and hot fusion reactions is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data that support the ndings of this study are included within the article.]

References

  1. Y.T. Oganessian, J. Phys. G 34, R165 (2007)

    Article  ADS  Google Scholar 

  2. Y.T. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

    Article  ADS  Google Scholar 

  3. Y.T. Oganessian, V.K. Utyonkov, Rep. Prog. Phys. 78, 036301 (2015)

    Article  ADS  Google Scholar 

  4. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  5. S. Hofmann, Radiochim. Acta 99, 405 (2011)

    Article  Google Scholar 

  6. K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004)

    Article  ADS  Google Scholar 

  7. K. Morita et al., J. Phys. Soc. Jpn. 76, 043201 (2007)

    Article  ADS  Google Scholar 

  8. A. Aprahamian, K. Langanke, M. Wiescher, Prog. Part. Nucl. Phys. 54, 535 (2005)

    Article  ADS  Google Scholar 

  9. Y.T. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)

    Article  ADS  Google Scholar 

  10. Y.T. Oganessian et al., Phys. Rev. C 87, 014302 (2013)

    Article  ADS  Google Scholar 

  11. Y.T. Oganessian et al., Phys. Rev. C 87, 034605 (2013)

    Article  ADS  Google Scholar 

  12. Y.T. Oganessian et al., Phys. Rev. C 87(87), 054621 (2013)

    Article  ADS  Google Scholar 

  13. V.K. Utyonkov et al., Phys. Rev. C 92, 034609 (2015)

    Article  ADS  Google Scholar 

  14. V.K. Utyonkov et al., Phys. Rev. C 97, 014320 (2018)

    Article  ADS  Google Scholar 

  15. S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007)

    Article  ADS  Google Scholar 

  16. S. Hofmann et al., Eur. Phys. J. A 48, 62 (2012)

    Article  ADS  Google Scholar 

  17. S. Hofmann et al., Eur. Phys. J. A 52, 180 (2016)

    Article  ADS  Google Scholar 

  18. R. Eichler et al., Nature 447, 72 (2007)

    Article  ADS  Google Scholar 

  19. L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojevic, M.A. Garcia, H. Nitsche, Phys. Rev. Lett. 103, 132502 (2009)

    Article  ADS  Google Scholar 

  20. C. Düllmann et al., Phys. Rev. Lett. 104, 252701 (2010)

    Article  ADS  Google Scholar 

  21. J.M. Gates et al., Phys. Rev. C 83, 054618 (2011)

    Article  ADS  Google Scholar 

  22. J.M. Khuyagbaatar et al., Phys. Rev. Lett. 112, 172501 (2014)

    Article  ADS  Google Scholar 

  23. S. Hofmann et al., Eur. Phys. J. A 14, 147 (2002)

    Article  ADS  Google Scholar 

  24. V.V. Volkov, Izv. Akad. Nauk SSSR Ser. Fiz 50, 1879 (1986)

    Google Scholar 

  25. N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.B. Permjakov, V.V. Volkov, Phys. Lett. B 319, 425 (1993)

    Article  ADS  Google Scholar 

  26. N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.B. Permjakov, V.V. Volkov, Phys. Rev. C 51, 2635 (1995)

    Article  ADS  Google Scholar 

  27. G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Nucl. Phys. A 646, 29 (1999)

    Article  ADS  Google Scholar 

  28. G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Nucl. Phys. A 633, 409 (1998)

    Article  ADS  Google Scholar 

  29. G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Nuovo Cimento A 110, 1143 (1997)

    Article  ADS  Google Scholar 

  30. G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 678, 24 (2000)

    Article  ADS  Google Scholar 

  31. G.G. Giardina, S. Hofmann, A.I. Muminov, A.K. Nasirov, Eur. Phys. J. A 8, 205 (2000)

    Article  ADS  Google Scholar 

  32. G.G. Giardina, F. Hanappe, A.I. Muminov, A.K. Nasirov, L. Stuttgé, Nucl. Phys. A 671, 165 (2000)

    Article  ADS  Google Scholar 

  33. A.K. Nasirov et al., Nucl. Phys. A 671, 342 (2005)

    Article  ADS  Google Scholar 

  34. H.Q. Zhang et al., Phys. Rev. C 81, 034611 (2010)

    Article  ADS  Google Scholar 

  35. A.K. Nasirov, G. Mandaglio, G.G. Giardina, A. Sobiczewski, A.I. Muminov, Phys. Rev. C 84, 044612 (2011)

    Article  ADS  Google Scholar 

  36. Z.H. Liu, J.D. Bao, Phys. Rev. C 74, 057602 (2006)

    Article  ADS  Google Scholar 

  37. N. Wang, J. Tian, W. Scheid, Phys. Rev. C 84, 061601(R) (2011)

    Article  ADS  Google Scholar 

  38. N. Wang, E.G. Zhao, W. Scheid, S.G. Zhou, Phys. Rev. C 85, 041601(R) (2012)

    Article  ADS  Google Scholar 

  39. N. Wang, E.G. Zhao, W. Scheid, Phys. Rev. C 89, 037601 (2014)

    Article  ADS  Google Scholar 

  40. L. Zhu, Z.Q. Feng, C. Li, F.S. Zhang, Phys. Rev. C 90, 014612 (2014)

    Article  ADS  Google Scholar 

  41. Z.Q. Feng, G.M. Jin, J.Q. Li, W. Scheid, Phys. Rev. C 76, 044606 (2007)

    Article  ADS  Google Scholar 

  42. A.S. Zubov, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Phys. Rev. C 68, 014616 (2003)

    Article  ADS  Google Scholar 

  43. G.G. Adamian, N.V. Antonenko, W. Scheid, A.S. Zubov, Phys. Rev. C 78, 044605 (2008)

  44. G.G. Adamian, N.V. Antonenko, W. Scheid, Clustering effects within the dinuclear model. in Lecture Notes in Physics, edited by C. Beck, vol. 848, p. 165 (2012)

  45. J. Hong, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 92, 014617 (2015)

    Article  ADS  Google Scholar 

  46. J. Hong, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 94, 044606 (2016)

    Article  ADS  Google Scholar 

  47. J. Hong, G.G. Adamian, N.V. Antonenko, Eur. Phys. J. A 52, 305 (2016)

    Article  ADS  Google Scholar 

  48. J. Hong, G.G. Adamian, N.V. Antonenko, Phys. Lett. B 764, 42 (2017)

    Article  ADS  Google Scholar 

  49. J. Hong, G.G. Adamian, N.V. Antonenko, P. Jachimowicz, M. Kowal, Phys. Lett. B 809, 135760 (2020)

    Article  Google Scholar 

  50. J. Hong, G.G. Adamian, N.V. Antonenko, P. Jachimowicz, M. Kowal, Phys. Rev. C 103, L041601 (2021)

    Article  ADS  Google Scholar 

  51. S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  52. V.S. Barashenkov, V.D. Toneev, High Energy Interaction of Particles and Nuclei with Atomic Nuclei (Atomizdat, Moscow, 1972)

    Google Scholar 

  53. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

    Google Scholar 

  54. A. Ignatyuk, Statistical Properties of Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983)

    Google Scholar 

  55. E.A. Cherepanov, A.S. Iljinov, M.V. Mebel, J. Phys. G 9, 931 (1983)

    Article  ADS  Google Scholar 

  56. K.H. Schmidt, W. Morawek, Rep. Prog. Phys. 54, 949 (1991)

    Article  ADS  Google Scholar 

  57. A.S. Iljinov et al., Nucl. Phys. A 543, 517 (1992)

    Article  ADS  Google Scholar 

  58. A.S. Zubov, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Phys. Rev. C 65, 024308 (2002)

    Article  ADS  Google Scholar 

  59. S.G. Mashnik, A.J. Sierk, K.K. Gudima, arXiv:nucl-th/0208048 (2010)

  60. P. Jachimowicz, M. Kowal, J. Skalski, At. Data Nucl. Data Tables 138, 101393 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work of GGA and NVA was supported by the Ministry of Science and Higher Education of the Russian Federation (contract 075-10-2020-117). MK was co-financed by the National Science Centre under contract no. UMO-2013/08/M/ST2/00257 (LEA-COPIGAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adamian.

Additional information

Communicated by Alexis Diaz-Torres.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Adamian, G.G., Antonenko, N.V. et al. Hot and cold fusion reactions leading to the same superheavy evaporation residue. Eur. Phys. J. A 58, 180 (2022). https://doi.org/10.1140/epja/s10050-022-00826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00826-3

Navigation