Skip to main content
Log in

Systematics on production of superheavy nuclei \(Z = 119-122\) in fusion-evaporation reactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The fusion dynamics of the formation of superheavy nuclei were investigated thoroughly within the dinuclear system model. The Monte Carlo approach was implemented in the nucleon transfer process to include all possible orientations, at which the dinuclear system is assumed to be formed at the touching configuration of dinuclear fragments. The production cross sections of superheavy nuclei Cn, Fl, Lv, Ts, and Og were calculated and compared with the available data from Dubna. The evaporation residue excitation functions in the channels of pure neutrons and charged particles were systematically analyzed. The combinations of \(^{44}\)Sc, \(^{48,50}\)Ti, \(^{49,51}\)V, \(^{52,54}\)Cr, \(^{58,62}\)Fe, and \(^{62,64}\)Ni bombarding the actinide nuclides \(^{238}\)U, \(^{244}\)Pu, \(^{248}\)Cm, \(^{247,249}\)Bk, \(^{249,251}\)Cf, \(^{252}\)Es, and \(^{243}\)Am were calculated to produce the superheavy elements with \(Z=119-122\). We obtained that the production cross sections sensitively depend on the neutron richness of the reaction system. The structure of the evaporation residue excitation function is related to the neutron separation energy and fission barrier of the compound nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. T. Oganessian, F.S. Abdullin, P.D. Bailey et al., Synthesis of a new element with atomic number Z=117. Phys. Rev. Lett. 104, 142502 (2010). 10.1103/PhysRevLett.104.142502

  2. A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Closed shells for Z> 82 and N > 126 in a diffuse potential well. Phys. Lett. 22, 500 (1966). https://doi.org/10.1016/0031-9163(66)91243-1

  3. Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

    Article  Google Scholar 

  4. A. Sobiczewski, K. Pomorski, Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292 (2007). https://doi.org/10.1016/j.ppnp.2006.05.001

    Article  ADS  Google Scholar 

  5. S. Ćwiok, P.-H. Heenen, W. Nazarewicz, Shape coexistence and triaxiality in the superheavy nuclei. Nature (London) 433, 705 (2005). https://doi.org/10.1038/nature03336

  6. S. Hofmann, D. Ackermann, S. Antalic et al., Probing shell effects at Z= 120 and N= 184. GSI Scientific Report-2007, 131 (2008)

  7. Y. T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Attempt to produce element 120 in the \(^{244}\)Pu+\(^{58}\)Fe reaction. Phys. Rev. C 79, 024603 (2009). https://doi.org/10.1103/PhysRevC.79.024603

  8. S. Hofmann et al., Physics experiments on superheavy elements at the GSI SHIP. GSI Scientific Report-2011, 205 (2012)

  9. S. Hofmann, S. Heinz, R. Mann et al., Review of even element super-heavy nuclei and search for element 120. Eur. Phys. J. A 52, 180 (2016). https://doi.org/10.1140/epja/i2016-16180-4

    Article  ADS  Google Scholar 

  10. J. Khuyagbaatar, A. Yakushev, E. Ch, Dullmann et al., The Superheavy Element Search Campaigns at TASCA (GSI Scientific Report-2012, 2013), p. 131

  11. H.M. Albers, J. Khuyagbaatar, D.J. Hinde et al., Zeptosecond contact times for element \(Z=120\) synthesis. Phys. Lett. B 808, 135626 (2020). https://doi.org/10.1016/j.physletb.2020.135626

    Article  Google Scholar 

  12. E.K. Hulet, R.W. Lougheed, J.F. Wild et al., Search for superheavy elements in the bombardment of \(^{248}\)Cm with \(^{48}\)Ca. Phys. Rev. Lett. 39, 385 (1977). https://doi.org/10.1103/PhysRevLett.39.385

    Article  ADS  Google Scholar 

  13. M. Schädel, J.V. Kratz, H. Ahrens et al., Isotope distributions in the reaction of \(^{238}\)U with \(^{238}\)U. Phys. Rev. Lett. 41, 469 (1978). https://doi.org/10.1103/PhysRevLett.41.469

    Article  ADS  Google Scholar 

  14. Y. T. Oganessian, A.S. Iljnov, A.G. Demin et al., Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z > 100. Nucl. Phys. A 239, 353 (1975). https://doi.org/10.1016/0375-9474(75)90456-X

  15. Y. T. Oganessian, A.S. Iljnov, A.G. Demin et al., Experiments on the synthesis of neutron-deficient kurchatovium isotopes in reactions induced by \(^{50}\)Ti Ions. Nucl. Phys. A 239, 157 (1975). https://doi.org/10.1016/0375-9474(75)91140-9

  16. S. Hofmann, G. Münzenberg, Discovery of the heaviest elements. Rev. Mod. Phys. 72, 733 (2000). https://doi.org/10.1103/RevModPhys.72.733

    Article  ADS  Google Scholar 

  17. G. Münzenberg, From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.008

    Article  ADS  Google Scholar 

  18. K. Morita, K. Morimoto, D. Kaji et al., Production and decay properties of \(^{272}\)111 and its daughter nuclei. J. Phys. Soc. Jpn. 73, 2593 (2004). https://doi.org/10.1143/JPSJ.73.1738

    Article  ADS  Google Scholar 

  19. Y. T. Oganessian, A.V. Yeremin, A.G. Popeko et al., Synthesis of nuclei of the superheavy element 114 in reactions induced by \(^{48}\)Ca. Nature (London) 400, 242 (1999). https://doi.org/10.1038/22281

  20. Y. T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Synthesis of superheavy nuclei in the \(^{48}\)Ca+\(^{244}\)Pu reaction: \(^{288}\)114. Phys. Rev. C 62, 041604(R) (2000). https://doi.org/10.1103/PhysRevC.62.041604

  21. Y. T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Synthesis of the isotopes of elements 118 and 116 in the \(^{249}\)Cf and \(^{245}\)Cm+\(^{48}\)Ca fusion reactions. Phys. Rev. C 74, 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602

  22. Y. T. Oganessian, V.K. Utyonkov, Superheavy nuclei from \(^{48}\)Ca-induced reactions. Nucl. Phys. A 944, 62 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.003

  23. Z.Y. Zhang, Z.G. Gan, L. Ma et al., Observation of the Superheavy Nuclide \(^{271}\)Ds. Chin. Phys. Lett. 29, 012502 (2012). https://doi.org/10.1088/0256-307X/29/1/012502

    Article  ADS  Google Scholar 

  24. S. Bjornholm, W.J. Swiatecki, Dynamical aspects of nucleus-nucleus collisions. Nucl. Phys. A 391, 471 (1982). https://doi.org/10.1016/0375-9474(82)90621-2

    Article  ADS  Google Scholar 

  25. W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Fusion by diffusion II. Synthesis of transfermium elements in cold fusion reactions. Phys. Rev. C 71(2005). https://doi.org/10.1103/PhysRevC.71.014602

  26. T. Cap, K. Siwek-Wilczynska, J. Wilczynski, Nucleus-nucleus cold fusion reactions analyzed with the l-dependent fusion by diffusion model. Phys. Rev. C 83, 054602 (2011). https://doi.org/10.1103/PhysRevC.83.054602

    Article  ADS  Google Scholar 

  27. V. Zagrebaev, W. Greiner, Low-energy collisions of heavy nuclei: dynamics of sticking, mass transfer and fusion. J. Phys. G 34(1), 1 (2007). https://doi.org/10.1088/0954-3899/34/1/001

    Article  ADS  Google Scholar 

  28. V. Zagrebaev, W. Greiner, New way for the production of heavy neutron-rich nuclei. J. Phys. G 35, 125103 (2008). https://doi.org/10.1088/0954-3899/35/12/125103

    Article  ADS  Google Scholar 

  29. Z.H. Liu, J.D. Bao, Role of the coupling between neck and radial degrees of freedom in evolution from dinucleus to mononucleus. Phys. Rev. C 83, 044613 (2011). https://doi.org/10.1103/PhysRevC.83.044613

    Article  ADS  Google Scholar 

  30. G.G. Adamian, N.V. Antonenko, W. Scheid et al., Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). https://doi.org/10.1063/1.55172

    Article  ADS  Google Scholar 

  31. G.G. Adamian, N.V. Antonenko, W. Scheid et al., Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633, 409 (1998). https://doi.org/10.1016/S0375-9474(98)00124-9

    Article  ADS  Google Scholar 

  32. Z.Q. Feng, G.M. Jin, F. Fu et al., Production cross sections of superheavy nuclei based on dinuclear system model. Nucl. Phys. A 771, 50 (2006). https://doi.org/10.1016/j.nuclphysa.2006.03.002

    Article  ADS  Google Scholar 

  33. Z.Q. Feng, G.M. Jin, J.Q. Li et al., Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). https://doi.org/10.1103/PhysRevC.76.044606

  34. Z.Q. Feng, G.M. Jin, J.Q. Li, Dynamics in production of superheavy nuclei in low-energy heavy-ion collisions. Nucl. Phys. Rev. 28, 1 (2011) https://doi.org/10.11804/NuclPhysRev.28.01.001

    Google Scholar 

  35. L. Guo, C. Shen, C. Yu et al., Isotopic trends of quasifission and fusion-fission in the reactions \(^{48}\)Ca+\(^{239,244}\)Pu. Phys. Rev. C 98, 064609 (2018). https://doi.org/10.1103/PhysRevC.98.064609

  36. V.I. Zagrebaev, W. Greiner, Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257 (2015). https://doi.org/10.1016/j.nuclphysa.2015.02.010

    Article  ADS  Google Scholar 

  37. A.K. Nasirov, G. Giardina, G. Mandaglio et al., Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element. Phys. Rev. C 79, 024606 (2009). https://doi.org/10.1103/PhysRevC.79.024606

    Article  ADS  Google Scholar 

  38. Z.Q. Feng, G.M. Jin, J.Q. Li et al., Production of heavy and superheavy nuclei in massive fusion reactions. Nucl. Phys. A 816, 33 (2009). https://doi.org/10.1016/j.nuclphysa.2008.11.003

    Article  ADS  Google Scholar 

  39. Z.G. Gan, X.H. Zhou, M.H. Huang et al., Predictions of synthesizing element 119 and 120. Sci. China Phys. Mech. Astron. 54, s61 (2011). https://doi.org/10.1007/s11433-011-4436-4

    Article  ADS  Google Scholar 

  40. N. Wang, E.G. Zhao, W. Scheid, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets. Phys. Rev. C 85, 041601(R) (2012). https://doi.org/10.1103/PhysRevC.85.041601

    Article  ADS  Google Scholar 

  41. F. Li, L. Zhu, Z.H. Wu et al., Predictions for the synthesis of superheavy elements Z=119 and 120. Phys. Rev. C 98, 014618 (2018). https://doi.org/10.1103/PhysRevC.98.014618

    Article  ADS  Google Scholar 

  42. G.G. Adamian, N.V. Antonenko, H. Lenske et al., Predictions of identification and production of new superheavy nuclei with Z=119 and 120. Phys. Rev. C 101, 034301 (2020). https://doi.org/10.1103/PhysRevC.101.034301

    Article  ADS  Google Scholar 

  43. G.G. Adamian, N.V. Antonenko, A. Diaz-Torres, S. Heinz, How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020). https://doi.org/10.1140/epja/s10050-020-00046-7

    Article  ADS  Google Scholar 

  44. Z.Q. Feng, G.M. Jin, J.Q. Li, Production of new superheavy Z=108-114 nuclei with \(^{238}\)U, \(^{244}\)Pu and \(^{248,250}\)Cm targets. Phys. Rev. C 80, 057601 (2009). https://doi.org/10.1103/PhysRevC.80.057601

    Article  ADS  Google Scholar 

  45. Z.Q. Feng, Production of neutron-rich isotopes around N=126 in multinucleon transfer reactions. Phys. Rev. C 95, 024615 (2017). https://doi.org/10.1103/PhysRevC.95.024615

    Article  ADS  Google Scholar 

  46. P.H. Chen, Z.Q. Feng, F. Niu et al., Production of proton-rich nuclei around Z = 84–90 in fusion-evaporation reactions. Eur. Phys. J. A 53, 9 (2017). https://doi.org/10.1140/epja/i2017-12281-x

    Article  ADS  Google Scholar 

  47. P.H. Chen, Z.Q. Feng, J.Q. Li et al., A statistical approach to describe highly excited heavy and superheavy nuclei. Chin. Phys. C 40, 091002 (2016). https://doi.org/10.1088/1674-1137/40/9/091002

    Article  ADS  Google Scholar 

  48. P.H. Chen, F. Niu, Y.F. Guo et al., Nuclear dynamics in multinucleon transfer reactions near Coulomb barrier energies. Nucl. Sci. Tech. 29, 185 (2018). https://doi.org/10.1007/s41365-018-0521-y

    Article  Google Scholar 

  49. F. Niu, P.H. Chen, H.G. Cheng et al., Multinucleon transfer dynamics in nearly symmetric nuclear reactions. Nucl. Sci. Tech. 31, 59 (2020). https://doi.org/10.1007/s41365-020-00770-1

    Article  Google Scholar 

  50. G.G. Adamian, N. Antonenko, W. Scheid, Characteristics of quasifission products within the dinuclear system model. Phys. Rev. C 68, 034601 (2003). https://doi.org/10.1103/PhysRevC.68.034601

    Article  ADS  Google Scholar 

  51. G.G. Adamian, N.V. Antonenko, R.V. Jolos et al., Effective nucleus-nucleus for calculation of potential energy of a dinuclear system. Int. J. Mod. Phys. E 5, 191 (1996). https://doi.org/10.1142/S0218301396000098

    Article  ADS  Google Scholar 

  52. C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett. 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766

    Article  ADS  Google Scholar 

  53. J.Q. Li, G..W. olschin, Distribution of the dissipated angular momentum in heavy-ion collisions. Phys. Rev. C 27, 590 (1983). https://doi.org/10.1103/PhysRevC.27.590

  54. P. Möller et al., Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002

    Article  ADS  Google Scholar 

  55. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Measurements of cross sections and decay properties of the isotopes of elements 112, 114 and 116 Produced in the Fusion Reactions \(^{233,238}\)U, \(^{242}\)Pu, and \(^{248}\)Cm + \(^{48}\)Ca. Phys. Rev. C 70, 064609 (2004). https://doi.org/10.1103/PhysRevC.70.064609

    Article  ADS  Google Scholar 

  56. P.H. Chen, F. Niu, Z.Q. Feng, Production mechanism of proton-rich actinide isotopes in fusion reactions and via multinucleon transfer processes. Phys. Rev. C 102, 014621 (2020). https://doi.org/10.1103/PhysRevC.102.014621

    Article  ADS  Google Scholar 

  57. D.C. Zhang, H.G. Cheng, Z.Q. Feng, Hyperon dynamics in heavy-ion collisions near threshold energy. Chin. Phys. Lett. 38, 092501 (2021). https://doi.org/10.1088/0256-307X/38/9/092501

    Article  ADS  Google Scholar 

  58. Y.T. Oganessian, F.S. Abdullin, C. Alexander et al., Experimental studies of the \(^{249}\)Bk+\(^{48}\)Ca reaction including decay properties and excitation function for isotopes of element 117 and discovery of the new isotope \(^{277}\)Mt. Phys. Rev. C 87, 054621 (2013). https://doi.org/10.1103/PhysRevC.87.054621

    Article  ADS  Google Scholar 

  59. V.I. Zagrebaev, W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions. Phys. Rev. C 78, 034610 (2008). https://doi.org/10.1103/physrevc.78.034610

    Article  ADS  Google Scholar 

  60. V.I. Zagrebaev, A.V. Karpov, W. Greiner, Possibilities for synthesis of new isotopes of superheavy elements in fusion reactions. Phys. Rev. C 85, 014608 (2012). https://doi.org/10.1103/PhysRevC.85.014608

    Article  ADS  Google Scholar 

  61. K. Siwek-Wilczynska, T. Cap, M. Kowal et al., Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z=114-120 elements based on macroscopic-microscopic fission barriers. Phys. Rev. C 86, 014611 (2012). https://doi.org/10.1103/PhysRevC.86.014611

    Article  ADS  Google Scholar 

  62. Z.H. Liu, J.D. Bao, Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the \(^{50}\)Ti + \(^{249}\)Bk hot fusion reaction. Phys. Rev. C 84, 031602(R) (2011). https://doi.org/10.1103/PhysRevC.84.031602

    Article  ADS  Google Scholar 

  63. K. Siwek-Wilczynska, T. Cap, J. Wilczynski, How can one synthesize the element Z = 120? Int. J. Mod. Phys. E 19, 500 (2010). https://doi.org/10.1142/S021830131001490X

    Article  ADS  Google Scholar 

  64. A.K. Nasirov, G. Mandaglio, G. Giardina et al., Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120. Phys. Rev. C 84, 044612 (2011). https://doi.org/10.1103/PhysRevC.84.044612

    Article  ADS  Google Scholar 

  65. M. Bender, K. Rutz, P.-G. Reinhard et al., Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999). https://doi.org/10.1103/PhysRevC.60.034304

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fei Niu, Peng-Hui Chen and Zhao-Qing Feng. The first draft of the manuscript was written by Fei Niu, Peng-Hui Chen and Zhao-Qing Feng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhao-Qing Feng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12175072 and 11722546) and the Talent Program of South China University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, F., Chen, PH. & Feng, ZQ. Systematics on production of superheavy nuclei \(Z = 119-122\) in fusion-evaporation reactions. NUCL SCI TECH 32, 103 (2021). https://doi.org/10.1007/s41365-021-00946-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00946-3

Keywords

Navigation