Skip to main content
Log in

High-spin states of \(^{204}\)At: isomeric states and shears band structure

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

High-spin states of neutron-deficient trans-lead nucleus \(^{204}\hbox {At}\) were populated up to \(\sim 8\,\mathrm{MeV}\) excitation through the \(^{12}\hbox {C} + ^{197}\hbox {Au}\) fusion evaporation reaction. Decay of the associated levels through prompt and delayed \(\gamma \)-ray emissions were studied to evaluate the underlying nuclear structure. The level scheme, which was partly known, was extended further. An isomeric \(16^+\) level with observed mean lifetime \(\tau =52 \pm 5\, \mathrm{ns}\), was established from our measurements. Attempts were made to interpret the excited states based on multi quasiparticle and hole structures involving \(2f_{5/2}\), \(1h_{9/2}\), and \(1i_{13/2}\) shell model states, along with moderate core excitation. Magnetic dipole band structure over the spin parity range: \(16^+\)\(23^+\) was confirmed and evaluated in more detail, including the missing cross-over E2 transitions. Band-crossing along the shears band was observed and compared with the evidence of similar phenomena in the neighbouring \(^{202}\hbox {Bi}\), \(^{205}\hbox {Rn}\) isotones and the \(^{203}\hbox {At}\) isotope. Based on comparison of the measured B(M1)/B(E2) values for transitions along the band with the semiclassical model based estimates, the shears band of \(^{204}\hbox {At}\) was established along with the level scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Associated data were submitted to the National Nuclear Data Center (NNDC) for evaluation].

References

  1. V. Margerin, G.J. Lane, G.D. Dracoulis, N. Palalani, M.L. Smith, A.E. Stuchbery, Phys. Rev. C 93, 064309 (2016). https://doi.org/10.1103/PhysRevC.93.064309

    Article  ADS  Google Scholar 

  2. T. Palazzo, G.J. Lane, A.E. Stuchbery, A.J. Mitchell, A. Akber, M.S.M. Gerathy, S.S. Hota, T. Kibédi, B.Q. Lee, N. Palalani, M.W. Reed, Phys. Rev. C 97, 014323 (2018). https://doi.org/10.1103/PhysRevC.97.014323

    Article  ADS  Google Scholar 

  3. B. Fant, T. Weckström, T. Lönnroth, C.J. Herrlander, K. Honkanen, A. Källberg, Nucl. Phys. A 429, 294 (1986)

    Google Scholar 

  4. S. Frauendorf, Nucl. Phys. A 557, 259c (1993)

    ADS  Google Scholar 

  5. S. Frauendorf, Nucl. Phys. A 677, 115 (2000)

    ADS  Google Scholar 

  6. K. Auranen et al., Phys. Rev. C 97, 024301 (2018)

    ADS  Google Scholar 

  7. A.N. Andreyev et al., Nature 405, 430 (2000)

    ADS  Google Scholar 

  8. R. Julin, K. Helariutta, M. Muikku, J. Phys. G Nucl. Part. Phys. 27, R109 (2001). (and references therein)

    ADS  Google Scholar 

  9. N. Kesteloot et al., Phys. Rev. C 92, 054301 (2015)

    ADS  Google Scholar 

  10. Liang Jun, Ma. Zhong-Yu, Commun. Theor. Phys. 48, 705 (2007)

    ADS  Google Scholar 

  11. R.M. Clark et al., Phys. Rev. Lett. 78, 1868 (1997)

    ADS  Google Scholar 

  12. R.M. Clark, A.O. Macchiavelli, Annu. Rev. Nucl. Part. Sci. 50, 1 (2000)

    ADS  Google Scholar 

  13. H. Hübel, Prog. Part. Nucl. Phys. 54, 1 (2005)

    ADS  Google Scholar 

  14. J.R. Novak et al., Phys. Rev. C 59, R2989 (1999)

    ADS  Google Scholar 

  15. D.J. Hartley et al., Phys. Rev. C 78, 054319 (2008)

    ADS  Google Scholar 

  16. K. Auranen et al., Phys. Rev. C 91, 024324 (2015)

    ADS  Google Scholar 

  17. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Rep. Prog. Phys. 79, 076301 (2016). (and references therein)

    ADS  Google Scholar 

  18. D. Kanjilal et al., Nucl. Phys. A 842, 1 (2010)

    ADS  Google Scholar 

  19. A. Gavron, Phys. Rev. C 21, 230 (1980)

    ADS  Google Scholar 

  20. S. Muralithar et al., Nucl. Instrum. Meth. A 622, 281 (2010)

    ADS  Google Scholar 

  21. Hui Tan et al., IEEE Nucl. Sci. Symp. Conf. Rec. 2008, 3196 (2008). https://doi.org/10.1109/NSSMIC.2008.4775029

    Article  Google Scholar 

  22. R. Palit, A.I.P. Conf, Proc. 1336, 573 (2011)

    Google Scholar 

  23. R. Palit et al., Nucl. Instrum. Meth. A 680, 90 (2012)

    ADS  Google Scholar 

  24. D.C. Radford, Nucl. Instrum. Meth. A 361, 306 (1995)

    ADS  Google Scholar 

  25. R.K. Bhowmik, S. Muralithar, R.P. Singh, Proc. DAE Symp. Nucl. Phys. 44B, 422 (2001)

    Google Scholar 

  26. V. Rahkonen, B. Fant, C.J. Herrlander, K. Honkanen, A. Källberg, T. Weckström, Nucl. Phys. A 441, 11 (1985)

    ADS  Google Scholar 

  27. T.P. Sjoreen, D.B. Fossan, U. Garg, A. Neskakis, A.R. Poletti, E.K. Warburton, Phys. Rev. C 25, 889 (1982)

    ADS  Google Scholar 

  28. K.S. Krane, R.M. Steffen, R.M. Wheeler, Nucl. Data Tables 11, 351 (1973)

    ADS  Google Scholar 

  29. A. Krämer-Flecken, T. Morek, R.M. Lieder, W. Gast, G. Hebbinghaus, H.M. Jäger, W. Urban, Nucl. Instrum. Meth. A 275, 333 (1989)

    ADS  Google Scholar 

  30. C. Droste, S.G. Rohoziński, K. Starosta, T. Morek, J. Srebrny, P. Magierski, Nucl. Instrum. Meth. A 378, 518 (1996)

    ADS  Google Scholar 

  31. K. Starosta et al., Nucl. Instrum. Meth. A 423, 16 (1999)

    ADS  Google Scholar 

  32. J.K. Deng, W.C. Ma, J.H. Hamilton, A.V. Ramayya, J. Rikovska, N.J. Stone, W.L. Croft, R.B. Piercey, J.C. Morgan, P.F. Mantica Jr., Nucl. Instrum. Meth. 317, 242 (1992)

    ADS  Google Scholar 

  33. P.M. Jones, L. Wei, F.A. Beck, P.A. Butler, T. Byrski, G. Duchêne, G. de France, F. Hannachi, G.D. Jones, B. Kharraja, Nucl. Instrum. Meth. A 362, 556 (1995)

    ADS  Google Scholar 

  34. E.S. Macias, W.D. Ruhter, D.C. Camp, R.G. Lanier, Comp. Phys. Comm. 11, 75 (1976)

    ADS  Google Scholar 

  35. R.F. Davie, A.R. Poletti, G.D. Dracoulis, A.P. Byrne, C. Fahlander, Nucl. Phys. A 430, 454 (1984)

    ADS  Google Scholar 

  36. S. Rajbanshi et al., Phys. Rev. C 89, 014315 (2014)

    ADS  Google Scholar 

  37. M. Alpsten, G. Astner, Phys. Scr. 5, 41 (1972)

    ADS  Google Scholar 

  38. A.M. Baxter, A.P. Byrne, G.D. Dracoulis, R.A. Bark, F. Riess, A.E. Stuchbery, M.C. Kruse, A.R. Poletti, Nucl. Phys. A 515, 493 (1990)

    ADS  Google Scholar 

  39. Xiaolong Huang, Mengxiao Kang, Nucl. Data Sheets 133, 221 (2016)

  40. B. Singh, Nucl. Data Sheets 108, 79 (2007)

    ADS  Google Scholar 

  41. B. Fant, T. Weckstrom, A. Källberg, Phys. Scr. 41, 652 (1990)

  42. P. Gippner, K.-H. Kaun, W. Neubert, W. Schulze, F. Stary, Nucl. Phys. A 237, 142 (1975)

    ADS  Google Scholar 

  43. T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor Jr., Nucl. Instrum. Meth. A 589, 202 (2008)

    ADS  Google Scholar 

  44. H. Ejiri, M.J.A. de Voigt, Gamma Ray and Electron Spectroscopy in Nuclear Physics (Oxford University Press, Oxford, 1987), p.504

    Google Scholar 

  45. A.A. Pasternak, E.O. Lieder, R.M. Lieder, Acta Phys. Pol. B 40, 647 (2009)

    ADS  Google Scholar 

  46. R.M. Clark et al., J. Phys. G Nucl. Part. Phys. 19, L57 (1993)

    ADS  Google Scholar 

  47. P. Möller et al., Atom. Data Nucl. Data Tabl. 109, 1 (2016)

    ADS  Google Scholar 

  48. A.O. Macchiavelli, R.M. Clark, M.A. Deleplanque, R.M. Diamond, P. Fallon, I.Y. Lee, F.S. Stephens, K. Vetter, Phys. Rev. C 58, R621 (1998)

    ADS  Google Scholar 

  49. A.O. Macchiavelli, R.M. Clark, P. Fallon, M.A. Deleplanque, R.M. Diamond, R. Krucken, I.Y. Lee, F.S. Stephens, S. Asztalos, K. Vetter, Phys. Rev. C 57, R1073 (1998)

    ADS  Google Scholar 

  50. G. Scheveneels, F. Hardeman, G. Neyens, R. Coussement, Phys. Rev. C 43, 2566 (1991)

    ADS  Google Scholar 

  51. H. Hübel, Fortschr. der Phys. 26, 327 (1977)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to the staff of the BARC-TIFR Pelletron Accelerator facility for smooth running of the machine during the experiment. Special thanks go to the members of the INGA collaboration for setting up the Clover Detector Array. We are grateful to S. Rajbanshi and Sajad Ali for their vauable suggestions on the theoretical estimates. We acknowledge the financial support for the project by the Department of Atomic Energy, Government of India, under Grant no. 12-R & D-SIN-5.02-0102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha.

Additional information

Communicated by W. Korten.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjilal, D., Dey, S.K., Bhattacharjee, S.S. et al. High-spin states of \(^{204}\)At: isomeric states and shears band structure. Eur. Phys. J. A 58, 159 (2022). https://doi.org/10.1140/epja/s10050-022-00809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00809-4

Navigation