Skip to main content
Log in

Multiparticle-hole excitations in nuclei near N = Z = 20: \(^{41}\)K

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

This experimental study of high-spin structure near \(N = Z = 20\) nuclei was focused on \(^{41}\)K, but will also mention three newly observed \(\gamma \) transitions in \(^{41}\)Ca observed in the same reaction. High-spin states were populated using the \(^{26}\)Mg(\(^{18}\)O, \(p2n\gamma \))\(^{41}\)K and \(^{26}\)Mg(\(^{18}\)O, \(3n\gamma \))\(^{41}\)Ca reactions. The experiment was carried out at an incident beam energy of 50 MeV at the Florida State University (FSU) John D. Fox Superconducting Linear Accelerator Laboratory and used the FSU high-purity germanium detector array. The \(^{41}\)K level scheme was extended to 12325 keV, possibly with J\(^{\pi }\) = 25/2\(^-\) or 27/2\(^+\), by means of 25 new transitions and that of \(^{41}\)Ca to 9916 keV. Linear polarization and a measure of angular distribution results are also reported and used to provide information on the spins and parities of several states in the \(^{41}\)K level scheme. The results have been compared to the spsdpf cross-shell FSU shell model interaction calculations. The theoretical results from configurations involving no or one additional nucleon promoted from the sd to the fp shell agree relatively well with the energies of known states, while those that involve multi-particle excitations paint an interesting and complex picture of interplay between single-particle excitations, collective pairing, and deformation. This presents an interesting challenge for future theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request.]

References

  1. M.G. Mayer, Phys. Rev. 74, 235 (1948)

    Article  ADS  Google Scholar 

  2. E. Wigner, Phys. Rev. 51, 947 (1937)

    Article  ADS  Google Scholar 

  3. W. Barkas, Phys. Rev. 55, 691 (1939)

    Article  ADS  Google Scholar 

  4. B. Abromeit, S.L. Tabor, V. Tripathi, R.S. Lubna, D. Caussyn, R. Dungan, K. Kravvaris, E. Rubino, P.-L. Tai, A. Volya, Phys. Rev. C 100, 014310 (2019)

    Article  ADS  Google Scholar 

  5. R.S. Lubna, K. Kravvaris, S.L. Tabor, V. Tripathi, A. Volya, E. Rubino, J.M. Allmond, B. Abromeit, L. Baby, T.C. Hensley, Phys. Rev. C 100, 034308 (2019)

    Article  ADS  Google Scholar 

  6. R.S. Lubna, K. Kravvaris, S.L. Tabor, V. Tripathi, E. Rubino, A. Volya, Phys. Rev. Research 2, 043342 (2020)

    Article  ADS  Google Scholar 

  7. J.W. Olness, A.H. Lumpkin, J.J. Kolata, E.K. Warburton, J.S. Kim, Y.K. Lee, Phys. Rev. C 11, 110 (1975)

    Article  ADS  Google Scholar 

  8. H. Eggenhuisen, L. Ekström, G. Engelbertink, H. Aarts, W. Langeveld, Nucl. Phys. A 299, 175 (1978)

    Article  ADS  Google Scholar 

  9. K. Lieb, M. Uhrmacher, J. Dauk, A. Kleinfeld, Nucl. Phys. A 223, 445 (1974)

    Article  ADS  Google Scholar 

  10. R. Bhattacharjee, S. Samanta, S. Das, S.S. Bhattacharjee, R. Raut, S.S. Ghugre, A.K. Sinha, U. Garg, R. Chakrabarti, S. Mukhopadhyay, A. Dhal, R.P. Singh, N. Madhavan, S. Muralithar, Phys. Rev. C 94, 054312 (2016)

    Article  ADS  Google Scholar 

  11. H. Nann, W.S. Chien, A. Saha, B.H. Wildenthal, Phys. Rev. C 12, 1524 (1975)

    Article  ADS  Google Scholar 

  12. http://www.xia.com/DGF_Pixie16.html

  13. J. Pavan, “ph.D. Dissertation,” Florida State University (2004)

  14. K. Starosta, T. Morek, C. Droste, S. Rohoziński, J. Srebrny, A. Wierzchucka, M. Bergström, B. Herskind, E. Melby, T. Czonyka, P. Napiorkowski, Nucl. Instrum. Methods Phys. Res. Section A: Accel., Spectrom., Detect. Assoc. Equip. 423, 16 (1999)

  15. O. Klein, Y. Nishina, Nature 122, 398 (1928)

    Article  ADS  Google Scholar 

  16. L.W. Fagg, S.S. Hanna, Rev. Mod. Phys. 31, 711 (1959)

    Article  ADS  Google Scholar 

  17. http://www.nndc.bnl.gov/ensdf/

  18. https://www.volya.net/

  19. B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

  20. M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedri, Nucl. Phys. A 864, 113 (2011)

    Article  ADS  Google Scholar 

  21. B. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984)

    Article  ADS  Google Scholar 

  22. E. Ideguchi, D. G. Sarantites, W. Reviol, A. V. Afanasjev, M. Devlin, C. Baktash, R. V. F. Janssens, D. Rudolph, A. Axelsson, M. P. Carpenter, A. Galindo-Uribarri, D. R. LaFosse, T. Lauritsen, F. Lerma, C. J. Lister, P. Reiter, D. Seweryniak, M. Weiszflog, J. N. Wilson, Phys. Rev. Lett. 87, 222501 (2001)

  23. F. Wang, Z. Shi, X.W. Xia, Phys. Rev. C 102, 7 (2020)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1401574 (FSU), PHY-1712953 (FSU), and PHY-2012522 (FSU), the Stewardship Science Academic Alliance through the Centaur Center of Excellence under Grant No. NA0003841 (FSU), the U.S. Department of Energy, office of Science, under Awards No. DE-SC-0009883 (FSU) and DE-AC05-00OR22725 (ORNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rubino.

Additional information

Communicated by N. Alahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubino, E., Tabor, S.L., Tripathi, V. et al. Multiparticle-hole excitations in nuclei near N = Z = 20: \(^{41}\)K. Eur. Phys. J. A 58, 107 (2022). https://doi.org/10.1140/epja/s10050-022-00755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00755-1

Navigation