Skip to main content
Log in

The spin-parities of the 13.35 MeV state and high-lying excited states around 20 MeV in \(^{12}\)C nucleus

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A study of the \(^{11}\)B(\(^{3}\)He,d)\(^{12}\)C reaction at incident \(^{3}\)He energy \(\hbox {E}_{{lab}}\) = 25 MeV has been performed at the K-130 cyclotron at the University of Jyväskylä, Finland. Differential cross sections have been measured for the 13.35 MeV state and for the states with excitation energy around 20 MeV in \(^{12}\)C. The data were analyzed with the DWBA method. A tentative assignment, 4\(^{-}\), is given for the state at 13.35 MeV in a joint study of the reaction and inelastic scattering of \(\alpha \)-particles with the energy of 110 MeV. For the state at 20.98 MeV, the possible spin-parity 3\(^{-}\) and the isospin T = 0 are assigned for the first time. Our model description of the broad state at 21.6 MeV is consistent with the previous assignments of isospin T = 0 and spin-parity of 2\(^{+}\) or 3\(^{-}\). The excited state at 22.4 MeV may have possible spin-parities of either 6\(^{+}\) or 5\(^{-}\). The collected statistics was insufficient to solve this question. Rotational bands which can exist in \(^{12}\)C were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment:Experimental data present in the article is new, not yet published. Only our experimental data for the g.s. and 16.57 MeV states are published in article https://doi.org/10.1103/PhysRevC.102.054612. We plan to deposit our experimental data after article publication.]

References

  1. F. Hoyle, Astrophys. J. Suppl. Ser. 1, 12 (1954). https://doi.org/10.1086/190005

    Article  Google Scholar 

  2. D.M. Brink, in Proceedings of the International School of Physics “Enrico Fermi”, Varenna, 1956, Course 36, ed. by C. Bloch (Academic Press, New York, 1966), p. 247

  3. H. Horiuchi, Prog. Theor. Phys. 53, 447 (1975). https://doi.org/10.1143/PTP.53.447

    Article  ADS  Google Scholar 

  4. N. Takigawa, A. Arima, Nucl. Phys. A 168, 593 (1971). https://doi.org/10.1016/0375-9474(71)90549-5

    Article  ADS  Google Scholar 

  5. E. Uegaki, Y. Abe, S. Okabe, H. Tanaka, Prog. Theor. Phys. 62, 1621 (1979). https://doi.org/10.1143/PTP.62.1621

    Article  ADS  Google Scholar 

  6. M. Kamimura, Nucl. Phys. A 351, 456–480 (1981). https://doi.org/10.1016/0375-9474(81)90182-2

    Article  ADS  Google Scholar 

  7. K. Riisager, A.S. Jensen, P. Møller, Nucl. Phys. A 548, 393–413 (1992). https://doi.org/10.1016/0375-9474(92)90691-C

    Article  ADS  Google Scholar 

  8. T. Otsuka, N. Fukunishi, H. Sagawa, Phys. Rev. Lett. 70, 1385–1388 (1993). https://doi.org/10.1103/PhysRevLett.70.1385

    Article  ADS  Google Scholar 

  9. P.G. Hansen, A.S. Jensen, Annu. Rev. Nucl. Part. Sci. 45, 591–634 (1995). https://doi.org/10.1146/annurev.ns.45.120195.003111

    Article  ADS  Google Scholar 

  10. M. Freer, A.C. Merchant, J. Phys. G 23, 261 (1997). https://doi.org/10.1088/0954-3899/23/3/002

    Article  ADS  Google Scholar 

  11. P. Navratil, W. Erich Ormand, Phys. Rev. C 68, 034305 (2003). https://doi.org/10.1103/PhysRevC.68.034305

    Article  ADS  Google Scholar 

  12. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43–113 (2006). https://doi.org/10.1016/j.physrep.2006.07.001

  13. M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 98, 032501 (2007). https://doi.org/10.1103/PhysRevLett.98.032501

    Article  ADS  Google Scholar 

  14. A.S. Demyanova, A.A. Ogloblin, A.S. Goncharov, T.L. Belyaeva, Int. J. Mod. Phys. E 17, 2118–2122 (2008). https://doi.org/10.1142/S0218301308011197

    Article  ADS  Google Scholar 

  15. T. Suhara, Y. Kanada-En’yo, Prog. Theor. Phys. 123, 303 (2010). https://doi.org/10.1143/PTP.123.303

  16. M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi et al., Phys. Rev. C 84, 054308 (2011). https://doi.org/10.1103/PhysRevC.84.054308

    Article  ADS  Google Scholar 

  17. M. Freer, M. Itoh, T. Kawabata, H. Fujita, H. Akimune, Z. Buthelezi, J. Carter, R.W. Fearick, S.V. Förtsch, M. Fujiwara et al., Phys. Rev. C 86, 034320 (2012). https://doi.org/10.1103/PhysRevC.86.034320

    Article  ADS  Google Scholar 

  18. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215–313 (2013). https://doi.org/10.1016/j.ppnp.2012.07.001

    Article  ADS  Google Scholar 

  19. A.A. Ogloblin, A.N. Danilov, A.S. Demyanova, S.A. Goncharov, T.L. Belyaeva, W. Trzaska, in Nuclear Particle Correlations and Cluster Physics, ed. by W.-U. Schröder (World Scientific Press, 2017), pp. 311–338

  20. P. Schuck, H. Horiuchi, G. Röpke, A. Tohsaki, Nucl. Phys. A 738, 94 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.075

    Article  ADS  Google Scholar 

  21. T. Yamada, P. Schuck, Eur. Phys. J. A 26, 185 (2005). https://doi.org/10.1140/epja/i2005-10168-1

    Article  ADS  Google Scholar 

  22. Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, Phys. Rev. C 80, 064326 (2009). https://doi.org/10.1103/PhysRevC.80.064326

    Article  ADS  Google Scholar 

  23. W. von Oertzen, Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies, Lecture Notes in Physics, vol. 818, ed. by C. Beck (Springer, Berlin, 2010), p. 109. https://doi.org/10.1007/978-3-642-13899-7

  24. T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, Cluster in Nuclei (Lecture Notes in Physics), vol. 2, ed. by C. Beck (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-24707-1_5

  25. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.-G. Meißner, Rev. Mod. Phys. 90, 035004 (2018). https://doi.org/10.1103/RevModPhys.90.035004

  26. A.N. Danilov, T.L. Belyaeva, A.S. Demyanova, S.A. Goncharov, A.A. Ogloblin, Phys. Rev. C 80, 054603 (2009). https://doi.org/10.1103/PhysRevC.80.054603

    Article  ADS  Google Scholar 

  27. H. Morinaga, Phys. Rev. 101, 254 (1956). https://doi.org/10.1103/PhysRev.101.254

    Article  ADS  MathSciNet  Google Scholar 

  28. W.R. Zimmerman, N.E. Destefano, M. Freer, M. Gai, F.D. Smit, Phys. Rev. C 84, 027304 (2011). https://doi.org/10.1103/PhysRevC.84.027304

    Article  ADS  Google Scholar 

  29. A.A. Ogloblin, T.L. Belyaeva, A.N. Danilov, A.S. Demyanova, S.A. Goncharov, Eur. Phys. J. A 49, 46 (2013). https://doi.org/10.1140/epja/i2013-13046-3

    Article  ADS  Google Scholar 

  30. T.L. Belyaeva, A.S. Demyanova, S.A. Goncharov, A.A. Ogloblin, Rev. Mex. Fis. 55(2), 23 (2009)

    Google Scholar 

  31. A.S. Demyanova, T.L. Belyaeva, A.N. Danilov, Y.A. Glukhov, S.A. Goncharov, S.V. Khlebnikov, V.A. Maslov, Y.D. Molchanov, YuE Penionzkevich, R.V. Revenko et al., Phys. Atom. Nucl. 72, 1611 (2009). https://doi.org/10.1134/S1063778809100019

    Article  ADS  Google Scholar 

  32. A.S. Demyanova, A.A. Ogloblin, S.A. Goncharov, T.L. Belyaeva, in Proceedings of the International Nuclear Physics Conference, Tokyo, 3–8 June 2007, vol. 2, ed. by S. Nagamiya, T. Motobayashi, M. Oka, R.S. Hayano, T. Nagae (Physical Society of Japan, Tokyo, 2008), p. 489 (2007)

  33. D.J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D.J. Parker, C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014). https://doi.org/10.1103/PhysRevLett.113.012502

    Article  ADS  Google Scholar 

  34. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990). https://doi.org/10.1016/0375-9474(90)90271-M

    Article  ADS  Google Scholar 

  35. G.M. Reynolds, D.E. Rundquist, R.M. Poichar, Phys. Rev. C 3, 442 (1971). https://doi.org/10.1103/PhysRevC.3.442

    Article  ADS  Google Scholar 

  36. M. Freer, I. Boztosun, C.A. Bremner, S.P.G. Chappell, R.L. Cowin, G.K. Dillon, B.R. Fulton, B.J. Greenhalgh, T. Munoz-Britton, M.P. Nicoli et al., Phys. Rev. C 76, 034320 (2007). https://doi.org/10.1103/PhysRevC.76.034320

    Article  ADS  Google Scholar 

  37. O.S. Kirsebom, M. Alcorta, M.J.G. Borge, M. Cubero, C.A. Diget, R. Dominguez-Reyes, L.M. Fraile, B.R. Fulton, H.O.U. Fynbo, S. Hyldegaard et al., Phys. Rev. C 81, 064313 (2010). https://doi.org/10.1103/PhysRevC.81.064313

    Article  ADS  Google Scholar 

  38. A.A. Ogloblin, A.S. Demyanova, A.N. Danilov, S.V. Dmitriev, T.L. Belyaeva, S.A. Goncharov, V.A. Maslov, YuG Sobolev, W. Trzaska, S.V. Khlebnikov, EPJ Web Conf. 66, 02074 (2014). https://doi.org/10.1051/epjconf/20146602074

    Article  Google Scholar 

  39. M. Freer, S. Almaraz-Calderon, A. Aprahamian, N.I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, N. Curtis, X. Fang et al., Phys. Rev. C 83, 034314 (2011). https://doi.org/10.1103/PhysRevC.83.034314

    Article  ADS  Google Scholar 

  40. W.H. Trzaska, P. Heikkinen, A.N. Danilov, A.S. Demyanova, S.V. Khlebnikov, T.U. Malamut, V.A. Maslov, A.A. Ogloblin, Y.G. Sobolev, Nucl. Inst. Meth. Phys. Res. A 903, 241 (2018). https://doi.org/10.1016/j.nima.2018.07.002

    Article  ADS  Google Scholar 

  41. G.I. Kopylov, Preprint JINR (P-1079) (Dubna, 1962)

  42. A.S. Demyanova, A.A. Ogloblin, A.N. Danilov, S.V. Dmitriev, S.A. Goncharov, N. Burtebaev, J. Burtebaeva, N. Saduev, T.L. Belyaeva, H. Suzuki et al., Eur. Phys. J. Conf. 66, 02026 (2014). https://doi.org/10.1051/epjconf/20146602026

    Article  Google Scholar 

  43. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983)

    Google Scholar 

  44. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

    Article  ADS  Google Scholar 

  45. C.-T. Liang, X.-H. Li, C.-H. Cai, J. Phys. G Nucl. Part. Phys. 36, 085104 (2009). https://doi.org/10.1088/0954-3899/36/8/085104

    Article  ADS  Google Scholar 

  46. Z. Zhang, D.Y. Pang, J.L. Lou, Phys. Rev. C 94, 014619 (2016). https://doi.org/10.1103/PhysRevC.94.014619

    Article  ADS  Google Scholar 

  47. P.D. Kunz, E. Rost, Computional Nuclear Physics, vol. 2, ed. by K. Langanke et al. (Springer, New York, 1993), p. 88

  48. A.S. Demyanova, V.I. Starastsin, A.N. Danilov, A.A. Ogloblin, S.V. Dmitriev, S.A. Goncharov, T.L. Belyaeva, V.A. Maslov, YuG Sobolev, W. Trzaska et al., Phys. Rev. C 102, 054612 (2020). https://doi.org/10.1103/PhysRevC.102.054612

    Article  ADS  Google Scholar 

  49. R. Bijker, F. Iachello, Prog. Part. Nucl. Phys. 110, 103735 (2020). https://doi.org/10.1016/j.ppnp.2019.103735

    Article  Google Scholar 

  50. J.H. Kelley, J.E. Purcell, C.G. Sheu, Nucl. Phys. A 968, 71 (2017). https://doi.org/10.1016/j.nuclphysa.2017.07.015

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was partly supported by the Russian Science Foundation (project no. 18-12-00312) and a mobility grant from the Academy of Finland. We are very grateful to the staff of the Accelerator Laboratory for excellent working atmosphere and maintaining high-quality beams throughout the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Demyanova.

Additional information

Communicated by Alessia Di Pietro.

This article is dedicated to memory of our leader and colleague, Professor Alexey Ogloblin. He passed on February 23, 2021. Alexey Ogloblin will be greatly missed as a Head of department of Nuclear Physics in Kurchatov Institute. His work in light exotic nuclei was widely cited and earned him great respect. He had the highest standards in research, publication, mentoring, and international collaboration. We will miss the contributions he could made else to the nuclear physics and to our lives as a leader, colleague and friend.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanova, A., Starastsin, V., Ogloblin, A. et al. The spin-parities of the 13.35 MeV state and high-lying excited states around 20 MeV in \(^{12}\)C nucleus. Eur. Phys. J. A 57, 204 (2021). https://doi.org/10.1140/epja/s10050-021-00515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00515-7

Navigation