Skip to main content
Log in

Revealing new structures in odd–odd \(^{54}\)Mn nucleus

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The excited states of odd–odd \(^{54}\)Mn (\(Z=25, N=29\)) nucleus have been investigated using the fusion evaporation reaction \(^{55}\)Mn(\(\alpha \), \(\alpha \)n)\(^{54}\)Mn at the beam energy of 34 MeV. A new and improved level scheme of \(^{54}\)Mn has been proposed in this work with the placement of 22 new \(\gamma \)-ray transitions. Spin and parity (J\(^\pi \)) of most of the levels in the revised level scheme have been firmly assigned. The placement of some of the already known \(\gamma \) rays in the level scheme and J\(^\pi \) assignments of some of the levels reported earlier have also been revised. The new level scheme, which has been extended up to \(\sim \)6 MeV, provides new insight and interesting structural aspects of the generation of high angular momentum in this odd–odd Mn isotope with neutron number (\(N=29\)) just above the \(N=28\) shell gap. Three octupole-phonon-coupled negative parity states have been identified for the first time in this nucleus. E3 transitions have also been observed to decay from these states. Shell model calculations with two different interactions i.e. kb3gpn and gx1pn have been performed which well reproduced the low-lying, few-particle states but fail to reproduce the higher-lying multi-particle states. These higher-lying states have been understood as resulting from collective excitations. An oblate minimum obtained from the Total Routhian Surface calculations provides support to this conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data generated for the study of this nucleus are contained in this published article.]

References

  1. K. Arnswald et al., Phys. Lett. B 820, 136592 (2021)

    Article  Google Scholar 

  2. T. Otsuka, M. Honma, T. Mizusaki, Phys. Rev. Lett. 81, 1588 (1998)

    Article  ADS  Google Scholar 

  3. A.M. Nathan et al., Phys. Rev. C 16, 192 (1977)

    Article  ADS  Google Scholar 

  4. D. Steppenbeck et al., Phys. Rev. C 81, 014305 (2010)

    Article  ADS  Google Scholar 

  5. M. Palacz et al., Nucl. Phys. A 627, 162 (1997)

    Article  ADS  Google Scholar 

  6. G. Kiran Kumar et.al., J. Phys. G: Nucl. Part. Phys. 35, 095104 (2008)

  7. M. Toulemonde et al., J. Phys. G: Nucl. Part. Phys. 5, 6 (1979)

    Google Scholar 

  8. D.C. Radford, A.R. Poletti, J. Phys. G: Nucl. Phys. 5, 3 (1979)

    Article  Google Scholar 

  9. M. Axiotis et al., Phys. Rev. C 76, 014303 (2007)

    Article  ADS  Google Scholar 

  10. C.E. Svensson et al., Phys. Rev. C 58, R2621 (1998)

    Article  ADS  Google Scholar 

  11. A. Giorni et al., Nucl. Phys. A 292, 213 (1977)

    Article  ADS  Google Scholar 

  12. S.A. Milne et al., Phys. Rev. Lett. 117, 082502 (2016)

    Article  ADS  Google Scholar 

  13. D. Rudolph et al., Phys. Rev. C 82, 054309 (2010)

    Article  ADS  Google Scholar 

  14. M.A.G. Silviera et al., Phys. Rev. C 74, 064312 (2006)

    Article  ADS  Google Scholar 

  15. D. Rudolph et al., Phys. Rev. Lett. 80, 3018 (1998)

    Article  ADS  Google Scholar 

  16. C.D. O’Leary et al., Phys. Lett. B 525, 49 (2002)

  17. F. Brandolini et al., Phys. Rev. C 66, 024304 (2002)

    Article  ADS  Google Scholar 

  18. M.A. Bentley et al., Phys. Rev. Lett. 97, 132501 (2006)

  19. C.A. Ur et al., Phys. Rev. C 58, 6 (1998)

    Article  Google Scholar 

  20. S.J. Freeman et al., Phys. Rev. C 69, 064301 (2004)

    Article  ADS  Google Scholar 

  21. O. Izotova et al., Phys. Rev. C 69, 037303 (2004)

    Article  ADS  Google Scholar 

  22. N. Bendjaballah et al., Phys. Rev. Lett. 36, 1536 (1976)

    Article  ADS  Google Scholar 

  23. D.E. Appelbe et al., Phys. Rev. C 62, 064314 (2000)

    Article  ADS  Google Scholar 

  24. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  25. S. Das et al., Nucl Inst Meth Phys Res. A893, 138 (2018)

  26. D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995)

  27. A. Kramer-Flecken et al., Nucl. Instrum. Methods Phys. Res. A275, 333 (1989)

    Article  ADS  Google Scholar 

  28. S. Nandi et al., Phys. Rev. C 99, 054312 (2019)

    Article  ADS  Google Scholar 

  29. R. Palit, H.C. Jain, P.K. Joshi, S. Nagaraj, B.V.T. Rao, S.S. Chintalpudi, S.S. Ghugre, PRAMANA-J. Phys. 54, 347 (2000)

    Article  ADS  Google Scholar 

  30. S. Rajbanshi et al., Phys. Rev. C 89, 014315 (2014)

    Article  ADS  Google Scholar 

  31. A.M. Nathan et al., Phys. Rev. C 17, 3 (1978)

    Article  Google Scholar 

  32. P. Banerjee et al., Nuovo Cim. 85A, 54 (1985)

    Article  ADS  Google Scholar 

  33. D.G. Sarantites et al., Phys. Rev. C 14, 4 (1976)

    Article  Google Scholar 

  34. H. Junde, S. Huo, Y. Dong, Nucl. Data Sheets 112, 1513 (2011)

    Article  ADS  Google Scholar 

  35. Y. Dong, H. Junde, Nucl. Data Sheets 121, 1 (2014)

    Article  ADS  Google Scholar 

  36. F. Ajzenberg-Selove Ronald E. Brown, E. R. Flynn, J. W. Sunier, Phys. Rev. C 32 756 (1985)

  37. L.G. Alenius et al., Nuovo Cimento 27, 249 (1975)

    Article  ADS  Google Scholar 

  38. J.P. Johnstone et al., J. Phys. G: Nucl. Part. Phys. 3, L69 (1977)

    Article  Google Scholar 

  39. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301 (2002)

    Article  ADS  Google Scholar 

  40. M. Honma, T. Otsuka, B. Brown, T. Mizusaki, Eur. Phys. J. A 25, 499 (2005)

    Article  Google Scholar 

  41. A. Poves, J. Sánchez-Solano, E. Caurier, F. Nowacki, Nucl. Phys. A 694, 157 (2001)

    Article  ADS  Google Scholar 

  42. Oxbash for Windows, B. A. Brown et al., MSU-NSCL report number 1289 (2004)

  43. W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, Nucl. Phys. A 435, 397 (1985)

    Article  ADS  Google Scholar 

  44. W. Nazarewicz, M.A. Riley, J.D. Garrett, Nucl. Phys. A 512, 61 (1990)

    Article  ADS  Google Scholar 

  45. G. Mukherjee et al., Nucl. Phys. A 829, 137 (2009)

    Article  ADS  Google Scholar 

  46. S. Samiran Nayak, G. Mukherjee, Nucl. Phys. A 1023, 122449 (2022)

    Article  Google Scholar 

  47. S. Samiran Nayak, G. Mukherjee, Int. Jour. Mod. Phys. E 31, 2250048 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the operators and support staff of the K-130 Cyclotron at VECC, Kolkata for providing good quality \( \alpha \) beam and all the collaborators involved in this campaign for setting up the detector array. The tremendous help and support of Dr. Dirtha Sanyal (VECC) and the target lab staff of VECC are gratefully acknowledged for lending the material and preparation of the MnO\( _{2} \) target for the experiment. S. Basu, S. Dar and S. Basak acknowledge the financial support of UGC, Govt. of India. S. Das and A. Karmakar acknowledge CSIR, Govt. of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mukherjee.

Additional information

Communicated by Navin Alahari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Mukherjee, G., Nandi, S. et al. Revealing new structures in odd–odd \(^{54}\)Mn nucleus. Eur. Phys. J. A 59, 229 (2023). https://doi.org/10.1140/epja/s10050-023-01147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01147-9

Navigation