Skip to main content

Advertisement

Log in

Fission barriers of actinide nuclei with nuclear density functional theory: influence of the triaxial deformation

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The fission pathway of even–even actinide nuclei have been systematically calculated using the deformation-constrained nuclear density functional theory beyond the second fission barriers within the UNEDF1 energy-density functionals (EDFs). Our calculated results show that, allowing for triaxial deformation, the second fission barriers are lowered by a few hundreds of keV to 2 MeV. For the heaviest actinides, it is found that inclusion of triaxial deformation reduces the outer barrier significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are already given in the figures and in the table.]

Notes

  1. The experimental EB1, EB2, and \(E_\mathrm{II}\) values are obtained by fitting them to reproduce a variety of measured properties associated with the fission reactions of actinides featuring the double-humped barriers. For details, see Refs. [41, 42].

References

  1. J. Dudek, K. Pomorski, N. Schunck, N. Dubray, Eur. Phys. J. A 20, 15 (2003)

    ADS  Google Scholar 

  2. M. Arnould, K. Takahashi, Rep. Prog. Phys. 62, 395 (1999)

    ADS  Google Scholar 

  3. A. Mamdouh, J.M. Pearson, M. Rayet, F. Tondeur, Nucl. Phys. A 679, 337 (2001)

    ADS  Google Scholar 

  4. A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007)

    ADS  Google Scholar 

  5. M.G. Itkis, YuTs Oganessian, V.I. Zagrebaev, Phys. Rev. C 65, 044602 (2002)

    ADS  Google Scholar 

  6. N. Schunck, L.M. Robledo, Rep. Prog. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  7. P. Ring, P. Schuck, The Nuclear Many-Body Problem (1980)

  8. V.V. Pashkevich, Nucl. Phys. A 133, 400 (1969)

    ADS  Google Scholar 

  9. P. Möller, S.G. Nilsson, Phys. Lett. B 31, 283 (1970)

    ADS  Google Scholar 

  10. R.A. Gherghescu, J. Skalski, Z. Patyk, A. Sobiczewski, Nucl. Phys. A 651, 237 (1999)

    ADS  Google Scholar 

  11. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 85, 034305 (2012)

    ADS  Google Scholar 

  12. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 95, 014303 (2017)

    ADS  Google Scholar 

  13. M. Kowal, P. Jachimowicz, A. Sobiczewski, Phys. Rev. C 82, 014303 (2010)

    ADS  Google Scholar 

  14. P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Åberg, Phys. Rev. C 79, 064304 (2009)

    ADS  Google Scholar 

  15. J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)

    ADS  Google Scholar 

  16. J. Randrup, P. Möller, Phys. Rev. Lett. 106, 132503 (2011)

    ADS  Google Scholar 

  17. S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996)

    ADS  Google Scholar 

  18. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 58, 2126 (1998)

    ADS  Google Scholar 

  19. T. Bürvenich, M. Bender, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 69, 014307 (2004)

    ADS  Google Scholar 

  20. J.C. Pei, W. Nazarewicz, J.A. Sheikh, A.K. Kerman, Phys. Rev. Lett 102, 192501 (2009)

    ADS  Google Scholar 

  21. J.A. Sheikh, W. Nazarewicz, J.C. Pei, Phys. Rev. C 80, 011302 (2009)

    ADS  Google Scholar 

  22. A. Staszczak, A. Baran, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 80, 014309 (2009)

    ADS  Google Scholar 

  23. A. Staszczak, A. Baran, W. Nazarewicz, Phys. Rev. C 87, 024320 (2013)

    ADS  Google Scholar 

  24. A. Baran, M. Kowal, P.-G. Reinhard, L.M. Robledo, A. Staszczak, M. Warda, Nucl. Phys. A 944, 442 (2015)

    ADS  Google Scholar 

  25. N. Schunck, D. Duke, H. Carr, A. Knoll, Phys. Rev. C 90, 054305 (2014)

    ADS  Google Scholar 

  26. A.V. Afanasjev, H. Abusara, Phys. Rev. C 78, 014315 (2008)

    ADS  Google Scholar 

  27. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 82, 044303 (2010)

    ADS  Google Scholar 

  28. A.K. Dutta, J.M. Pearson, F. Tondeur, Phys. Rev. C 61, 054303 (2000)

    ADS  Google Scholar 

  29. L. Bonneau, P. Quentin, D. Samsœn, Eur. Phys. J. A 21, 391 (2004)

    ADS  Google Scholar 

  30. J.-P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006)

    ADS  Google Scholar 

  31. N. Dubray, H. Goutte, J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008)

    ADS  Google Scholar 

  32. W. Younes, D. Gogny, Phys. Rev. C 80, 054313 (2009)

    ADS  Google Scholar 

  33. B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 85, 011301 (2012)

    ADS  Google Scholar 

  34. B.-N. Lu, J. Zhao, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 89, 014323 (2014)

    ADS  Google Scholar 

  35. N. Schunck, J. Dobaczewski, J. McDonnell, W. Satuła, J.A. Sheikh, A. Staszczak, M. Stoitsov, P. Toivanen, Comput. Phys. Commun. 183, 166 (2012)

    ADS  MathSciNet  Google Scholar 

  36. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012)

    ADS  Google Scholar 

  37. A. Staszczak, M. Stoitsov, A. Baran, W. Nazarewicz, Eur. Phys. J. A 46, 85 (2010)

    ADS  Google Scholar 

  38. J. Dobaczewski, P. Olbratowski, Comput. Phys. Commun. 158, 158 (2004)

    ADS  Google Scholar 

  39. N. Schunck, Acta Phys. Pol. B 44, 263 (2013)

    ADS  Google Scholar 

  40. W. Ryssens, M. Bender, K. Bennaceur, P.-H. Heenen, J. Meyer, Phys. Rev. C 99, 044315 (2019)

    ADS  Google Scholar 

  41. S. Bjørnholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)

    ADS  Google Scholar 

  42. R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3170 (2009)

    Google Scholar 

Download references

Acknowledgements

The current work is supported by National Natural Science Foundation of China (Grant no. 11705038). We thank the HEPC Studio at Physics School of Harbin Institute of Technology for access to high performance computing resources through INSPUR-HPC@hepc.hit.edu.cn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Shi.

Additional information

Communicated by Michael Bender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, C., Zhou, C. & Shi, Y. Fission barriers of actinide nuclei with nuclear density functional theory: influence of the triaxial deformation. Eur. Phys. J. A 56, 180 (2020). https://doi.org/10.1140/epja/s10050-020-00182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00182-0

Navigation