Skip to main content
Log in

Dynamical versus statistical production of Intermediate Mass Fragments at Fermi Energies

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The emission probability of Intermediate Mass Fragments (IMFs) in non-central reactions has been investigated in collisions of heavy \(^{124}\hbox {Xe}\) projectiles with the two different medium-mass targets of \(^{64}\hbox {Ni}\) and \(^{64}\hbox {Zn}\) at the laboratory energy of 35 A MeV. The two colliding systems differ only for the target atomic number Z and, consequently, for the isospin N/Z ratio. The probability of IMFs emission from the projectile-like fragment has been measured, showing an enhancement of the IMFs emission for the neutron rich \(^{64}\hbox {Ni}\) target. Most of the observed projectile break-up yield is associated with the production of only one IMF, that is, a quasi-binary splitting of projectile in two fragments in a broad range of charge asymmetry. For the events with one IMF, the relative contributions of the dynamical and statistical emissions have been evaluated. We find an enhancement of dynamical break-up probability for the neutron rich target with respect to the neutron poor one. The analysis suggests influence of the target isospin in inducing the dynamical break-up of projectile-like fragments. The new data have been also compared with previous published results of \(^{112,124}\hbox {Sn}\) + \(^{58,64}\hbox {Ni}\) systems, in order to disentangle between isospin effects against system-size effects on the emission probability. The comparisons between previous and new data suggest that the dynamical break-up is determined by the N/Z content of both projectile and target; for the cases here investigated, the influence of the system size on the dynamical emission probability can be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data generated during this study are contained in this published article].

Notes

  1. For the sake of simplicity, we assume that in a semi-peripheral collision of a projectile P and a target T, the binary (at first) system PLF* + TLF* is formed, \(P+T\rightarrow PLF^{*}+TLF^{*}\). A two-step-decay scenario is assumed: The IMF is emitted from the projectile primary fragment PLF* (or TLF*), \(PLF^{*}\rightarrow PLF+IMF\). In the analysis, the PLF* is reconstructed from the PLF-IMF pair, neglecting neutrons and light charged particle (\(Z\le 2\)) emission.

References

  1. P. Glässel, Dv Harrach, H. Specht, Z. Phys. A 310, 189 (1983)

    Article  ADS  Google Scholar 

  2. G. Casini et al., Phys. Rev. Lett. 71, 2567 (1993)

    Article  ADS  Google Scholar 

  3. A.A. Stefanini et al., Z. Phys. A 351, 167 (1995)

    Article  ADS  Google Scholar 

  4. J. Töke et al., Phys. Rev. Lett. 75, 2920 (1995)

    Article  ADS  Google Scholar 

  5. J. Dempsey et al., Phys. Rev. C 54, 1710 (1996)

    Article  ADS  Google Scholar 

  6. J. Łukasik et al., Phys. Rev. C 55, 1906 (1997)

    Article  ADS  Google Scholar 

  7. R. Laforest et al., Phys. Rev. C 59, 2567 (1999)

    Article  ADS  Google Scholar 

  8. D. Theriault et al., Phys. Rev. C 71, 014610 (2005)

    Article  ADS  Google Scholar 

  9. E. De Filippo et al., Phys. Rev. C 71, 044602 (2005)

    Article  ADS  Google Scholar 

  10. E. De Filippo et al., Phys. Rev. C 71, 064604 (2005)

    Article  ADS  Google Scholar 

  11. M. Di Toro, A. Olmi, R. Roy, Eur. Phys. J. A 30, 65 (2006)

    Article  ADS  Google Scholar 

  12. M. Papa et al., Phys. Rev. C 75, 054616 (2007)

    Article  ADS  Google Scholar 

  13. S. Piantelli et al., Phys. Rev. C 76, 061601 (2007)

    Article  ADS  Google Scholar 

  14. P. Russotto et al., Phys. Rev. C 81, 064605 (2010)

    Article  ADS  Google Scholar 

  15. A. McIntosh et al., Phys. Rev. C 81, 034603 (2010)

    Article  ADS  Google Scholar 

  16. E. De Filippo et al., Phys. Rev. C 86, 014610 (2012)

    Article  ADS  Google Scholar 

  17. A. Rodriguez Manso, A. McIntosh, A. Jedele, K. Hagel, L. Heilborn, Z. Kohley, L. May, A. Zarrella, S. Yennello, Phys. Rev. C 95, 044604 (2017)

    Article  ADS  Google Scholar 

  18. A. Jedele et al., Phys. Rev. Lett. 118, 062501 (2017)

    Article  ADS  Google Scholar 

  19. A. Pagano et al., Nucl. Phys. A 734, 504 (2004)

    Article  ADS  Google Scholar 

  20. E. De Filippo, A. Pagano, Eur. Phys. J. A 50, 32 (2014)

    Article  ADS  Google Scholar 

  21. F. Bocage et al., Nucl. Phys. A 676, 391 (2000)

    Article  ADS  Google Scholar 

  22. P. Russotto et al., Phys. Rev. C 91, 014610 (2015)

    Article  ADS  Google Scholar 

  23. B.A. Li, W.U. Schröder (eds.), Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Science, New York, 2011)

    Google Scholar 

  24. V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2004)

    Article  ADS  Google Scholar 

  25. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  26. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    Article  ADS  Google Scholar 

  27. A. Pagano, Nucl. Phys. News 22, 28 (2012). And refs. therein

    Article  Google Scholar 

  28. S. Aiello et al., Nuclear Instrum. Methods Phys. Res. A 369, 50 (1996)

    Article  ADS  Google Scholar 

  29. M. Alderighi et al., IEEE Trans. Nuclear Sci. 52, 1624 (2005)

    Article  ADS  Google Scholar 

  30. E.V. Pagano et al., EPJ Web Conf. 117, 10008 (2016). And refs. therein

    Article  Google Scholar 

  31. L. Acosta et al., J. Phys. Conf. Ser. 730, 012001 (2016)

    Article  Google Scholar 

  32. E.V. Pagano, et al., in preparation

  33. C. Cavata et al., Phys. Rev. C 42, 1760 (1990)

    Article  ADS  Google Scholar 

  34. D. Lacroix, A. Van Lauwe, D. Durand, Phys. Rev. C 69, 054604 (2004)

    Article  ADS  Google Scholar 

  35. V. Baran, M. Colonna, M. Di Toro, Nucl. Phys. A 730, 329 (2004)

    Article  ADS  Google Scholar 

  36. M. Colonna, M. Di Toro, G. Fabbri, S. Maccarone, Phys. Rev. C 57, 1410 (1998)

    Article  ADS  Google Scholar 

  37. V.E. Viola, K. Kwiatkowski, M. Walker, Phys. Rev. C 31, 1550 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the INFN-LNS staff for providing both beams and targets of excellent quality. We are grateful also to the electronics, advanced technology and mechanical design staffs of INFN-division of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Russotto.

Additional information

Communicated by A.F. Di Pietro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russotto, P., De Filippo, E., Pagano, E.V. et al. Dynamical versus statistical production of Intermediate Mass Fragments at Fermi Energies. Eur. Phys. J. A 56, 12 (2020). https://doi.org/10.1140/epja/s10050-019-00011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00011-z

Navigation