Skip to main content
Log in

Parameters of Household Wastewater Treatment Using Composite Membranes with a Surface Layer of Cellulose Acetate

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Composite membranes based on nylon and cellulose acetate (CA) are synthesized by immersing a microporous nylon substrate into a 3% CA solution in acetone. The CA content in the membrane is 12–53% depending on the number of deposited surface layers. The results of studying the properties of the composite membranes show that the water uptake and total porosity of the membranes decrease with an increase in the number of CA layers; this finding is attributed to the compaction of the membrane structure. In addition, it is revealed that the contact angle of the membrane increases by 6.4°; this means that the hydrophilic properties of the membrane decrease. The deposition of the surface layer of CA leads to the smoothing of the porous and rough surface of the nylon membrane base and a decrease in the porosity. Tests on household wastewater treatment using a nylon–CA3 composite nanofiltration membrane are conducted. It is found that the specific flux of the nylon–CA3 membrane with respect to wastewater is 39.7 dm3/(m2 h) at a pressure of 0.7 MPa. According to the results of the study, it is determined that the average degree of purification using the nylon–CA3 membrane is 64.5%. The nylon–CA3 membrane exhibits a high selectivity for multivalent ions (70%) and a high degree of purification in terms of COD and BOD5 (~92%), which is not inferior to the characteristics of a commercial nanofiltration membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. M. Petrov and I. V. Knyazev, Ross. Zh. Prikl. Ekol. 4, 62 (2018).

    Google Scholar 

  2. A. V. Rodenko, Vest. Brest. Gos. Tekh. Univ. 2, 77 (2016).

  3. G. M. Tardi, V. Bakosh, and A. Iobbagi, Ochistka Stochnykh Vod, 4, 53 (2018).

    Google Scholar 

  4. I. Yu. Shlekova and A. I. Knysh, Ekol. Prom. Rossii 22, 20 (2018).

    Article  Google Scholar 

  5. D. D. Fazullin, G. V. Mavrin, I. G. Shaikhiev, and I. R. Nizameev, Pet. Chem. 58, 145 (2018).

    Article  CAS  Google Scholar 

  6. Yu. A. Karavanova, D. V. Golubenko, and A. B. Yaroslavtsev, Membr. Membr. Technol. 2, 251 (2020).

    Article  CAS  Google Scholar 

  7. E. Yu. Safronova and A. B. Yaroslavtsev, Petr. Chem. 56, 281 (2016).

    Article  CAS  Google Scholar 

  8. D. D. Fazullin, G. V. Mavrin, I. G. Shaikhiev, and E. A. Haritonova, Petr. Chem. 56, 454 (2016).

    Article  CAS  Google Scholar 

  9. D. D. Fazullin, G. V. Mavrin, and A. N. Salakhova, Memb. Membr. Technol. 2, 115 (2020).

    Article  CAS  Google Scholar 

  10. I. G. Shaikhiev, V. O. Dryakhlov, and D. D. Fazullin, Chern. Met. 7, 46 (2020).

    Google Scholar 

  11. S. Hube, J. Wang, and L. N. Sim, Sep. Purif. Technol. 259, 118125 (2021).

    Article  CAS  Google Scholar 

  12. L. Rocha, A. Yuri, P. B. Moser, and V. Moreira, Chem. Eng. J. 406, 104451 (2021).

    Google Scholar 

  13. Y. Wu, R. Yao, and X. Zhang, J. Environ. Chem. Eng. 9, 105164 (2021).

    Article  CAS  Google Scholar 

  14. M. Hezarjaribi, G. Bakeri, M. Sillanpaa, M. J. Chaichi, S. Akbari, and A. Rahimpour, J. Environ. Manage. 284, 111996 (2021).

    Article  CAS  Google Scholar 

  15. D. D. Fazullin and G. V. Mavrin, Surf. Eng. Appl. Electrochem. 56, 517 (2020).

    Article  Google Scholar 

  16. D. D. Fazullin, L. I. Fazullina, G. V. Mavrin, I. G. Shaikhiev, and V. O. Dryakhlov, Inorg. Mat. Appl. Res. 2, 32 (2021).

    Google Scholar 

  17. A. O. Volkov, D. V. Golubenko, and A. B. Yaroslavtsev, Sep. Purif. Technol. 254, 117562 (2021).

    Article  CAS  Google Scholar 

  18. A. D. Alvarenga and D. S. Correa, J. Clean. Prod. 285, 125376 (2021).

    Article  CAS  Google Scholar 

  19. X. Pei, G. Lan, Z. Tang, et al., J. Hazard. Mater. 406, 124746 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Fazullin.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazullin, D.D., Mavrin, G.V., Dryakhlov, V.O. et al. Parameters of Household Wastewater Treatment Using Composite Membranes with a Surface Layer of Cellulose Acetate. Membr. Membr. Technol. 3, 419–425 (2021). https://doi.org/10.1134/S2517751621060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621060032

Keywords:

Navigation