Skip to main content
Log in

Composite Membranes with Cellulose Acetate Surface Layer for Water Treatment

  • HUMAN LIFE-SUPPORT MATERIALS AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Microporous composite membranes containing from one to three ultrathin layers are obtained by a multistage immersion of a paper base in a solution of cellulose acetate in acetone. The physicochemical properties of the membranes are studied and the parameters of the membrane separation of heavy metal ions from tap water are determined. An increase in the particle size and a decrease in the absolute value of the ζ potential with the increase in the concentration of cellulose acetate in acetone are revealed. It is found that the membrane porosity increases from 47 to 51% depending on the number of ultrathin cellulose acetate layers on the substrate surface. A decrease in the moisture absorption of the composite membranes and an increase in the contact angle of wetting with distilled water from 30.0 to 68.8°, depending on the number of ultrathin layers, are observed. The scanning electron microscopy investigation of the membrane surface shows that the ultrathin layer consists of many pores with sizes less than 1 μm. The absorption bands in the IR spectra of the cellulose acetate and the surface of the composite microporous cellulose acetate (MCA) membrane are identical. The retention capacity of the composite MCA membranes is found by separation of iron ions from an iron(III) chloride solution and ranges from 47.5 to 97.4% depending on the number of cellulose acetate layers on the substrate surface for the specific performance ranging from 27.9 to 7399 dm3/(m2 h) and pressure 0.35 MPa. A high selectivity of a microporous membrane with three cellulose acetate layers (MCA-3) for heavy metal ions contained in tap water is found: Cr3+ (96%) > Cu2+ (92%) > Fe3+ (90%) > Mn2+ (45%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fazullin, D.D., Mavrin, G.V., Shaikhiev, I.G., and Haritonova, E.A., Separation of oil products from aqueous emulsion sewage using a modified nylon–polyaniline membrane, Pet. Chem., 2016, vol. 56, no. 5, pp. 454–458.

    Article  CAS  Google Scholar 

  2. Zhou, J., He, H.-L., Sun, F., Su, Y., Yu, H.-Y., and Gu, J.-S., Structural parameters reduction in polyamide forward osmosis membranes via click modification of the polysulfone support, Colloids Surf., A, 2020, vol. 585, art. ID 124082. https://doi.org/10.1016/j.colsurfa.2019.124082

    Article  CAS  Google Scholar 

  3. Morshed, M., Zimmer, A., Broch, L., Alem, H., and Roizard, D., PDMS membranes modified by polyelectrolyte multilayer deposition to improve OSN separation of diluted solutes in toluene, Sep. Purif. Technol., 2020, vol. 237, art. ID 116331.

  4. Badaraev, A.D., Koniaeva, A., Krikova, S.A., et al., Piezoelectric polymer membranes with thin antibacterial coating for the regeneration of oral mucosa, Appl. Surf. Sci., 2020, vol. 504, art. ID 144068.

    Article  CAS  Google Scholar 

  5. Fazullin, D.D., The modification of thin-film polymeric membranes by microwave radiation in a range of decimeter waves, ARPN J. Eng. Appl. Sci., 2019, vol. 14, no. 22, pp. 3889–3896.

    CAS  Google Scholar 

  6. Neumann, S., Bengtson, G., Meis, D., and Filiz, V., Thermal cross linking of novel azide modified polymers of intrinsic microporosity-effect of distribution and the gas separation performance, Polymers, 2019, vol. 11, no. 8, art. ID 1241.

    Article  Google Scholar 

  7. Deng, Y., Han, D., Deng, Y.Y., et al., Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation, Chem. Eng. J., 2020, vol. 379, art. ID 122391.

    Article  CAS  Google Scholar 

  8. Kouhestani, F., Torangi, M.A., Motavalizadehkakhky, A., Karazhyan, R., and Zhiani, R., Enhancement strategy of polyethersulfone (PES) membrane by introducing pluronic F127/graphene oxide and phytic acid/graphene oxide blended additives: Preparation, characterization and wastewater filtration assessment, Desalin. Water Treat., 2019, vol. 171, pp. 44–56.

    Article  CAS  Google Scholar 

  9. Duong, P.H.H., Kuehl, V.A., Mastorovich, B., Hoberg, J.O., Parkinson, B.A., and Li-Oakey, K.D., Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes, J. Membr. Sci., 2019, vol. 574, pp. 338–348.

    Article  CAS  Google Scholar 

  10. At, W.N.S.W., Lun, A.W., and Mohammad, A.W., Role of graphene oxide in support layer modification of thin film composite (TFC) membrane for forward osmosis application, J. Kejuruteraan, 2019, vol. 31, no. 2, pp. 327–334. https://doi.org/10.17576/jkukm-2019-31(2)-18

    Article  Google Scholar 

  11. Khayet, M., García-Payo, C., and Matsuura, T., Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation, J. Membr. Sci., 2019, vol. 588, art. ID 117215. https://doi.org/10.1016/j.memsci.2019.117215

    Article  CAS  Google Scholar 

  12. Fazullin, D.D. and Mavrin, G.V., Separation of water-oil emulsions using composite membranes with a cellulose acetate surface layer, Chem. Pet. Eng., 2019, vol. 55, nos. 7–8, pp. 649–656.

  13. Jashni, E. and Hosseini, S.M., Promoting the electrochemical and separation properties of heterogeneous cation exchange membrane by embedding 8-hydroxyquinoline ligand: Chromium ions removal, Sep. Purif. Technol., 2020, vol. 234, art. ID 116118.

  14. Fazullin, D.D., Fazylova, R.D., Fazullina, L.I., and Mavrin, G.V., Obtaining and properties of a composite membrane with a surface layer of cellulose acetate, J. Phys.: Conf. Ser., 2019, vol. 1347, art. ID 012035.

    CAS  Google Scholar 

  15. Andreeva, M., Loza, N., Kutenko, N., and Kononenko, N., Polymerization of aniline in perfluorinated membranes under conditions of electrodiffusion of monomer and oxidizer, J. Solid State Electrochem., 2020, vol. 24, no. 1, pp. 101–110.

    Article  CAS  Google Scholar 

  16. Liu, Y., Han, Q., Li, T.T., Hua, J., et al., Heparin reduced dialysis through a facile anti-coagulant coating on flat and hollow fiber membranes, J. Membr. Sci., 2020, vol. 595, art. ID 117593.

    Article  CAS  Google Scholar 

  17. Khan, R., Khan, M.K., Wang, H., Xiao, K., and Huang, X., Grafting D-amino acid onto MF polyamide nylon membrane for biofouling control using biopolymer alginate dialdehyde as a versatile platform, Sep. Purif. Technol., 2020, vol. 231, art. ID 115891.

  18. Gao, F., Wang, J., Zhang, H.W., et al., Aged PVDF and PSF ultrafiltration membranes restored by functional polydopamine for adjustable pore sizes and fouling control, J. Membr. Sci., 2019, vol. 570, pp. 156–167.

    Article  Google Scholar 

  19. Koroleva, T.M., M-MVI 539-03: Metodika vypolneniya izmerenii massovykh kontsentratsii metallov: Alyuminiya, zheleza, kadmiya, kobal’ta, margantsa, medi, nikelya, svintsa, titana, khroma, tsinka v pit’evoi, prirodnoi i stochnoi vode atomno-absorbtsionnym metodom s ETA (M-MVI 539-03: Method for Measuring Mass Concentrations of Metals: Aluminum, Iron, Cadmium, Cobalt, Manganese, Copper, Nickel, Lead, Titanium, Chromium, Zinc in Drinking, Natural and Waste Water by Atomic Absorption Method with ETA), St. Petersburg: Monitoring, 2003.

  20. Fazullin, D.D. and Fazylova, R.D., Purification of water from heavy metal ions by a dynamic membrane with a surface layer of cellulose acetate, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 421, art. ID 062032.

  21. Fazullin, D.D., Mavrin, G.V., Fazylova, R.D., and Shaikhiev, I.G., Cleaning water from copper and iron ions, using the dynamic nylon-polystyrene membrane, Vestn. Tekhnol. Univ., 2019, vol. 22, no. 6, pp. 93–96.

    Google Scholar 

Download references

Funding

This work was supported by the Grant of the President of the Russian Federation for the State Support of Young Russian Scientists, Candidates of Sciences, project no. MK-1107.2019.8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. D. Fazullin, L. I. Fazullina, G. V. Mavrin, I. G. Shaikhiev or V. O. Dryakhlov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazullin, D.D., Fazullina, L.I., Mavrin, G.V. et al. Composite Membranes with Cellulose Acetate Surface Layer for Water Treatment. Inorg. Mater. Appl. Res. 12, 1229–1235 (2021). https://doi.org/10.1134/S2075113321050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050105

Keywords:

Navigation