Skip to main content

Advertisement

Log in

Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Inorganic fouling is recognized as a serious challenge in different membrane desalination technologies. It not only reduces the permeate flux and membrane productivity but also significantly decreases the membrane lifespan and increases the energy and feed pressure requirement, and replacement costs. In this study, the activated carbon thin film (ACTF) as a new carbon nanostructure was synthesized and used as an adsorbent in activated carbon thin film/thin-film nano-filtration composite membrane (ACTF/TFNF). This study is aimed mainly for synthesis of multifunctional adsorptive membranes using the non-solvent phase separation (NIPS) technique, by modifying cotton-cellulosic waste to prepare ACTF, then combining it with Nylon 6, 12, as desalination layer of multifunctional (ACTF/TFNF) composite membrane. The prepared membrane (ACTF/TFNF) was characterized systematically by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, contact angle, and scanning electron microscope (SEM). SEM examinations on membrane samples showed that the membrane surface was entirely covered by a thin layer of sludge-type deposits. While the ACTF as an active layer improves the composite membrane purification efficiency, the decrease in permeate flux has been examined in the investigation of CaCO3 formation on prepared membranes. The aqueous solutions have been examined in a laboratory reverse osmosis cell for calcium carbonate precipitation. The membrane had a high reject ratio of 98.85 ± 0.18% that enhanced the efficiency of its anti-fouling efficiency. Moreover, at high pressures, the composite ACTF membrane enhanced flux stability in the desalination of seawater over blank membranes used for desalinating brackish water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang, Y., et al.: Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: a critical review. Water Res. 184, 116200 (2020)

    Article  Google Scholar 

  2. He, Z., et al.: Antifouling strategies based on super-phobic polymer materials. Prog. Org. Coat. 157, 106285 (2021)

    Article  Google Scholar 

  3. Torres, F.G.; De-la-Torre, G.E.: Environmental pollution with antifouling paint particles: distribution, ecotoxicology, and sustainable alternatives. Mar. Pollut. Bull. 169, 112529 (2021)

    Article  Google Scholar 

  4. Gkotsis, P.; Peleka, E.; Zouboulis, A.: The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations 7(2), 24 (2020)

    Article  Google Scholar 

  5. Zaidi, S.Z.J., et al.: Benchmarking of scaling and fouling of reverse osmosis membranes in a power generation plant of paper and board mill: an industrial case of a paper and board mill study. Int. J. Environ. Sci. Technol. (2020)

  6. Ahmed, H.A.; Mubarak, M.F.: Adsorption of cationic dye using a newly synthesized CaNiFe2O4/Chitosan magnetic nanocomposite: kinetic and isotherm studies. J. Polym. Environ. 29(6), 1835–1851 (2021)

    Article  Google Scholar 

  7. Sajawal, M., et al.: Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Stud. Therm. Eng. 15, 100543 (2019)

    Article  Google Scholar 

  8. Sójka-Ledakowicz, J., et al.: Membrane filtration of textile dyehouse wastewater for technological water reuse. Desalination 119(1), 1–9 (1998)

    Article  Google Scholar 

  9. Vatanpour, V., et al.: Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab. J. Chem. 13(1), 1731–1740 (2020)

    Article  Google Scholar 

  10. El-hoshoudy, A.N., et al.: Enhanced oil recovery using polyacrylates/ACTF crosslinked composite: preparation, characterization and coreflood investigation. J. Pet. Sci. Eng. 181, 106236 (2019)

    Article  Google Scholar 

  11. Fathy, M., et al.: Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption. Appl. Water Sci. 7(8), 4427–4435 (2017)

    Article  Google Scholar 

  12. El-Dakkony, S.R., et al.: Composite thin-film membrane of an assembled activated carbon thin film with autoself-healing and high-efficiency water desalination. Environ. Dev. Sustain. (2021). https://doi.org/10.1007/s10668-021-01544-4

  13. El-Denglawey, A.; Mubarak, M.F.; Selim, H.: Tertiary nanocomposites of Metakaolinite/Fe3O4/SBA-15 nanocomposite for the heavy metal adsorption: isotherm and kinetic study. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05690-9

  14. Sobolčiak, P., et al.: The preparation, properties and applications of electrospun co-polyamide 6, 12 membranes modified by cellulose nanocrystals. Mater. Des. 132, 314–323 (2017)

    Article  Google Scholar 

  15. Fathy, M., et al.: Enhanced desalination process using a Cu–ZnO-polyvinyl chloride-nylon nanofiltration membrane as a calcite antiscalant in reverse osmosis. Mater. Express 10(5), 671–679 (2020)

    Article  Google Scholar 

  16. El-Sayed Eid, M.: Polyethylenimine-functionalized magnetic amorphous carbon fabricated from oil palm leaves as a novel adsorbent for Hg(II) from aqueous solutions. Egypt. J. Pet. 27(4), 1051–1060 (2018)

    Article  Google Scholar 

  17. Wang, J.P., et al.: Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat. Commun. 9(1), 1579 (2018)

    Article  Google Scholar 

  18. Lu, L., et al.: Membrane mechanical properties of synthetic asymmetric phospholipid vesicles. Soft Matter 12(36), 7521–7528 (2016)

    Article  Google Scholar 

  19. Wang, H., et al.: Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation. Sep. Purif. Technol. 274, 119015 (2021)

    Article  Google Scholar 

  20. Tan, W.-L., et al.: A critical review to bridge the gaps between carbon capture storage and use of CaCO3. J. CO2 Util. 42, 101333 (2020)

    Article  Google Scholar 

  21. Foureaux, A.F., et al.: Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Sep. Purif. Technol. 212, 171–179 (2018)

    Article  Google Scholar 

  22. Mitsoyannis, E.; Saravacos, G.D.: Precipitation of calcium carbonate on reverse osmosis membranes. Desalination 21(3), 235–240 (1977)

    Article  Google Scholar 

  23. Takizawa, Y., et al.: Effective antiscaling performance of reverse-osmosis membranes made of carbon nanotubes and polyamide nanocomposites. ACS Omega 3(6), 6047–6055 (2018)

    Article  Google Scholar 

  24. Ashfaq, M.Y.; Al-Ghouti, M.A.; Zouari, N.: Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling. Carbon 166, 374–387 (2020)

    Article  Google Scholar 

  25. Chen, X., et al.: Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem. 315, 126276 (2020)

    Article  Google Scholar 

  26. Cui, J., et al.: Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 250, 117116 (2020)

    Article  Google Scholar 

  27. Lin, J.-Y., et al.: Diameter effect of silver nanowire doped in activated carbon as thin film electrode for high performance supercapacitor. Appl. Surf. Sci. 477, 257–263 (2019)

    Article  Google Scholar 

  28. Tzotzi, C., et al.: A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. J. Membr. Sci. 296(1), 171–184 (2007)

    Article  Google Scholar 

  29. Elmarghany, M.R., et al.: Thermal analysis evaluation of direct contact membrane distillation system. Case Stud. Therm. Eng. 13, 100377 (2019)

    Article  Google Scholar 

  30. Zhang, Y., et al.: Preparation of high performance polyamide membrane by surface modification method for desalination. J. Membr. Sci. 573, 11–20 (2019)

    Article  Google Scholar 

  31. 98/02369 Recent operating experiences of the advanced ceramic tube filter (ACTF) for the Wakamatsu 71 MW PFBC demonstration plant and design improvements for commercial plants: Maeno, H. et al. Mater. High Temperature, 1997, 14, (3), 347–353. Fuel and Energy Abstracts, 1998. 39(3), 214.

  32. Yang, Y., et al.: In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small 16(29), 2001634 (2020)

    Article  Google Scholar 

  33. Schaep, J., et al.: Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 14(1), 155–162 (1998)

    Article  Google Scholar 

  34. Yin, J.; Zhu, G.; Deng, B.: Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016)

    Article  Google Scholar 

  35. Xing, Y.-L., et al.: Laminated GO membranes for water transport and ions selectivity: Mechanism, synthesis, stabilization, and applications. Sep. Purif. Technol. 259, 118192 (2021)

    Article  Google Scholar 

  36. Kiefer, F., et al.: Membrane scaling in vacuum membrane distillation—part 1: in-situ observation of crystal growth and membrane wetting. J. Membr. Sci. 590, 117294 (2019)

    Article  Google Scholar 

  37. Yadav, S., et al.: Feasibility of brackish water and landfill leachate treatment by GO/MoS2-PVA composite membranes. Sci. Total Environ. 745, 141088 (2020)

    Article  Google Scholar 

  38. Yao, M., et al.: A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 479, 114312 (2020)

    Article  Google Scholar 

  39. Lalia, B.S.; Janajreh, I.; Hashaikeh, R.: A facile approach to fabricate superhydrophobic membranes with low contact angle hysteresis. J. Membr. Sci. 539, 144–151 (2017)

    Article  Google Scholar 

  40. Ahmad, T.; Guria, C.; Mandal, A.: Optimal synthesis of high fouling-resistant PVC-based ultrafiltration membranes with tunable surface pore size distribution and ultralow water contact angle for the treatment of oily wastewater. Sep. Purif. Technol. 257, 117829 (2021)

    Article  Google Scholar 

  41. Nghiem, L.D.; Cath, T.: A scaling mitigation approach during direct contact membrane distillation. Sep. Purif. Technol. 80(2), 315–322 (2011)

    Article  Google Scholar 

  42. Yousefi, N., et al.: Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr. Polym. 253, 117273 (2021)

    Article  Google Scholar 

  43. He, F.; Sirkar, K.K.; Gilron, J.: Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation. J. Membr. Sci. 345(1), 53–58 (2009)

    Article  Google Scholar 

  44. Sun, F., et al.: Multi-scaled, hierarchical nanofibrous membrane for oil/water separation and photocatalysis: preparation, characterization and properties evaluation. Prog. Org. Coat. 152, 106125 (2021)

    Article  Google Scholar 

  45. Chen, Y.; Lu, K.J.; Chung, T.-S.: An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation. J. Membr. Sci. 595, 117572 (2020)

    Article  Google Scholar 

  46. Lee, S.; Lee, J.: Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Res. 34, 3854–3866 (2000)

    Article  Google Scholar 

  47. Tariq, S.L., et al.: Nanoparticles enhanced phase change materials (NePCMs)-a recent review. Appl. Therm. Eng. 176, 115305 (2020)

    Article  Google Scholar 

  48. Kang, N.W., et al.: Analyses of calcium carbonate scale deposition on four RO membranes under a seawater desalination condition. Water Sci. Technol. 64(8), 1573–1580 (2011)

    Article  Google Scholar 

  49. Tomonaga, H., et al.: Adsorption properties of poly(NIPAM-co-AA) immobilized on silica-coated magnetite nanoparticles prepared with different acrylic acid content for various heavy metal ions. Chem. Eng. Res. Des. 171, 213–224 (2021)

    Article  Google Scholar 

  50. Dou, W.; Liu, J.; Li, M.: Competitive adsorption of Cu2+ in Cu2+, Co2+ and Ni2+ mixed multi-metal solution onto graphene oxide (GO)–based hybrid membranes. J. Mol. Liq. 322, 114516 (2021)

    Article  Google Scholar 

  51. El-Nagar, D.A.; Massoud, S.A.; Ismail, S.H.: Removal of some heavy metals and fungicides from aqueous solutions using nano-hydroxyapatite, nano-bentonite and nanocomposite. Arab. J. Chem. 13(11), 7695–7706 (2020)

    Article  Google Scholar 

  52. Uliana, A.A., et al.: Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 372(6539), 296 (2021)

    Article  Google Scholar 

  53. Chandrashekhar Nayak, M., et al.: Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd+ from aqueous solutions. Arab. J. Chem. 13(3), 4661–4672 (2020)

    Article  Google Scholar 

  54. Renu, M.A.; Singh, K.: Heavy metal removal from wastewater using various adsorbents: a review. J. Water Reuse Desalin. 7(4), 387–419 (2016)

    Article  Google Scholar 

  55. Hegazi, H.A.: Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 9(3), 276–282 (2013)

    Article  Google Scholar 

  56. Tripathi, A.; Ranjan, M.: Heavy metal removal from wastewater using low cost adsorbents. J. Bioremediat. Biodegrad. 6, 315 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank everyone in the Water Desalination Group in the Petroleum Research Institute [EPRI] for their efforts to produce that paper. Special thanks to Dr. Mahmoud Fathy Mubarak for his efforts in developing the new composites and interpreting new important results during my work in his laboratory with his Water treatment and Desalination Research Group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saly R. El-Dakkony or Mahmoud F. Mubarak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dakkony, S.R., Mubarak, M.F., Ali, H.R. et al. Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property. Arab J Sci Eng 47, 6951–6962 (2022). https://doi.org/10.1007/s13369-021-05969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05969-x

Keywords

Navigation