Skip to main content
Log in

How do signaling molecules organize higher brain functions?

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Studies of the late 20th century have confirmed the idea that long-term changes in the synaptic system of the human brain form the basis for fixing and maintaining external information. Such phenomena as learning and memory are expressions of these changes at the physiological level. As a result of these studies, the “material” base of these processes was determined as a complex of molecular events that start from the neurotransmitter-synapse interaction and ends with activation of the epigenetic structures of neuronal nucleus. The central event is a coordinated system of signaling pathways, including transduction, transcription, and regulatory (neurotrophic) proteins. Consistent temporal and spatial activations of these structures are the biochemical basis for memory formation and cognitive functions. Synaptic plasticity as a primary mechanism of memory and a multilevel system of signal molecule regulation constitute the essence of organizing different types of memory. The disturbance of neurochemical mechanisms is an initial cause of cognitive dysfunction and psychopathology. At the same time, signal molecules can be considered specific targets for the correction of these states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, T., Martin, K.C., Bartsch, D., and Kandel, E.R., Memory suppressor genes: inhibitory constraints on the storage of long-term memory, Science, 1998, vol. 279, pp. 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Anier, K., Malinovskaja, K., Aonurm-Helm, A., et al., DNA methylation regulates cocaine-induced behavioral sensitization in mice, Neuropsychopharmacology, 2010, vol. 35, pp. 2450–2461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anokhin, K.V., Molecular mechanisms of long-term memory, Zh. Vyssh. Nervn. Deyat., 1997, vol. 47, pp. 261–271.

    CAS  Google Scholar 

  • Bartsch, D., Ghirardi, M., Skehel, P.A., et al., Aplysia CREB-2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change, Cell, 1995, vol. 83, pp. 979–992.

    Article  CAS  PubMed  Google Scholar 

  • Bekinschtein, P., Kent, B.A., Oomen, C.A., et al., BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories, Cell Rep., 2013, vol. 5, pp. 759–768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanpied, T.A., Kerr, J.M., and Ehlers, M.D., Structural plasticity with preserved topology in the postsynaptic protein network, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 12587–12592.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne, J.N. and Harris, K.M., Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP, Hippocampus, 2011, vol. 21, pp. 354–373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cajal, S.R., La fine structure des centres nerveux, Proc. R. Soc. Lond., 1894, vol. 55, pp. 444–468.

    Article  Google Scholar 

  • Cajal, S.R., Recuerdos de Mi Vida, Cambridge, MA MIT Press, 1937.

    Google Scholar 

  • Casadio, A., Martin, K.C., Giustetto, M., et al., A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis, Cell, 1999, vol. 99, pp. 221–237.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Zou, X., Watanabe, H., et al., CREB binding protein is required for both short-term and long-term memory formation, J. Neurosci., 2010, vol. 30, pp. 13066–13077.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chwang, W.B., Arthur, J.S., Schumacher, A., and Sweatt, J.D., The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation, J. Neurosci., 2007, vol. 27, pp. 12732–12742.

    Article  CAS  PubMed  Google Scholar 

  • Cingolani, L.A. and Goda, Y., Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy, Nat. Rev. Neurosci., 2008, vol. 9, pp. 344–356.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.O., Husi, H., Yu, L., et al., Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome, J. Neurochem., 2006, vol. 97, suppl. 1, pp. 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Day, J.J. and Sweatt, J.D., Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory, Neurobiol. Learn. Mem., 2011, vol. 96, pp. 2–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Roo, M., Klauser, P., Garcia, P.M., et al., Spine dynamics and synapse remodeling during LTP and memory processes, Prog. Brain Res., 2008, vol. 169, pp. 199–207.

    Article  PubMed  Google Scholar 

  • Fischer, A., Sananbenesi, F., Pang, P.T., et al., Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory, Neuron, 2005, vol. 48, pp. 825–838.

    Article  CAS  PubMed  Google Scholar 

  • Follert, P., Cremer, H., and Beclin, C., MicroRNAs in brain development and function: a matter of flexibility and stability, Front. Mol. Neurosci., 2014, vol. 7, pp. 513.

    Article  Google Scholar 

  • Fortress, A.M., Schram, S.L., Tuscher, J.J., and Frick, K.M., Canonical Wnt signaling is necessary for object recognition memory consolidation, J. Neurosci., 2013, vol. 33, pp. 12619–12626.

    Article  CAS  PubMed  Google Scholar 

  • Gomazkov, O.A., Dominant. XX Century, Neirokhimiya, 1999, vol. 16, pp. 145–156.

    Google Scholar 

  • Gomez-Palacio-Schjetnan, A., and Escobar, M L., Neu-rotrophins and synaptic plasticity, Curr. Topics Behav. Neurosci., 2013, vol. 15, pp. 117–136.

    Article  CAS  Google Scholar 

  • Gomez-Pinilla, F., Zhuang, Y., Feng, J., et al., Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation, Eur. J. Neurosci., 2011, vol. 33, pp. 383–390.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graff, J., Kim, D., Dobbin, M.M., and Tsai, L.H., Epigenetic regulation of gene expression in physiological and pathological brain processes, Physiol. Rev., 2011, vol. 91, pp. 603–649.

    Article  CAS  PubMed  Google Scholar 

  • Grayson, D.R., Jia, X., Chen, Y., et al., Reelin promoter hypermethylation in schizophrenia, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 9341–9346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinkevich, L.N., Epigenetics and the formation of longterm memory, Neurosci. Behav. Physiol., 2014, vol. 44, no. 2, pp. 200–213.

    Article  CAS  Google Scholar 

  • Grinkevich, L.N., Lisachev, P.D., Kharchenko, O.A., and Vasil’ev, G.V., Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis, Brain Res., 2008, vol. 1187, pp. 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Guan, J.S., Su, S.C., Gao, J., et al., Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway, PLoS One, 2011, vol. 6, p. e25735.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebb, D.O., The Organization of Behavior: A Neuropsychological Theory, New York Wiley, 1949.

    Google Scholar 

  • Heine, M., Groc, L., Frischknecht, R., et al., Surface mobility of postsynaptic AMPARs tunes synaptic transmission, Science, 2008, vol. 320, pp. 201–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, Y., Doherty, J.J., and Dingledine, R., Altered his-tone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus, J. Neurosci., 2002, vol. 22, pp. 8422–8428.

    CAS  PubMed  Google Scholar 

  • Hut, R.A. and van der Zee, E.A., The cholinergic system, circadian rhythmicity, and time memory, Behav. Brain Res., 2011, vol. 221, pp. 466–480.

    Article  CAS  PubMed  Google Scholar 

  • Kandel, E.R., The molecular biology of memory storage: a dialogue between genes and synapses, Science, 2001, vol. 294, no. 5544, pp. 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  • Kandel, E.R., The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB, Mol. Brain, 2012, vol. 5, p. 14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley, J.B., Anderson, K.L., Altmann, S.L., and Itzhak, Y., Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein, Neuroscience, 2011, vol. 174, pp. 91–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, J.H., McNally, G.P., and Richardson, R., Recovery of fear memories in rats: role of gamma-amino butyric acid (GABA) in infantile amnesia, Behav. Neurosci., 2006, vol. 120, pp. 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Korzus, E., Rosenfeld, M.G., and Mayford, M.C., BP his-tone acetyl transferase activity is a critical component of memory consolidation, Neuron, 2004, vol. 42, pp. 961–972.

    Article  CAS  PubMed  Google Scholar 

  • Koshtoyants, Kh.S., Belkovye tela, obmen veshchestv i nervanaya regulyatsiya (Protein Bodies, Metabolism, and Nervous Regulation), Moscow Nauka, 1951.

    Google Scholar 

  • Kunde, S.A., Rademacher, N., Tzschach, A., et al., Characterization of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients, Hum. Genet., 2013, vol. 132, pp. 461–471.

    Article  PubMed  Google Scholar 

  • La Plant, Q., Vialou, V., Covington, H.E., et al., Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens, Nat. Neurosci., 2010, vol. 13, pp. 1137–1143.

    Article  Google Scholar 

  • Lashley, K., In search of the engram, Soc. Exp. Biol. Symp., 1950, vol. 4, pp. 454–482.

    Google Scholar 

  • Levenson J.M., O’ Riordan K.J., Brown K.D., et al., Regulation of histone acetylation during memory formation in the hippocampus, J. Biol. Chem., 2004, vol. 279, pp. 40545–40559.

    Article  CAS  PubMed  Google Scholar 

  • Levenson J.M., Roth T.L., Lubin F.D., et al., Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus, J. Biol. Chem., 2006, vol. 281, pp. 15763–15773.

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini, R., The nerve growth factor: thirty-five years later, EMBO J., 1987, vol. 6, pp. 1145–1154.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loewi, O., Über humorale Übertragbarkeit der Herzner-venwirkung, PflügersArch. Ges. Physiol., 1921, vol. 189, pp. 239–242.

    Article  Google Scholar 

  • Lu, B., Nagappan, G., and Lu, Y., BDNF and synaptic plasticity, cognitive function and dysfunction, Handb. Exp. Pharmacol., 2014, vol. 220, pp. 223–250.

    Article  CAS  PubMed  Google Scholar 

  • Maffioletti, E., Tardito, D., Gennarelli, M., and Bocchio-Chiavetto, L., Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders, Front. Cell Neurosci., 2014, vol. 8, p. 75.

    Article  PubMed Central  PubMed  Google Scholar 

  • Makkar, S.R., Zhang, S.Q., and Cranney, J., Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory, Neuropsychopharmacology, 2010, vol. 35, pp. 1625–1652.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mamiya, N., Fukushima, H., Suzuki, A., et al., Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory, J. Neurosci., 2009, vol. 29, pp. 402–413.

    Article  CAS  PubMed  Google Scholar 

  • Michan, S., Li, Y., Chou, M.M., et al., SIRT1 is essential for normal cognitive function and synaptic plasticity, J. Neurosci., 2010, vol. 30, pp. 9695–9707.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikaelsson, M.A. and Miller, C.A., The path to epigenetic treatment of memory disorders, Neurobiol. Learn. Mem., 2011, vol. 96, pp. 13–18.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moncada, D., Ballarini, F., Martinez, M.C., et al., Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 12931–12936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris, R.G., Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging, and schemas, Eur. J. Neurosci., 2006, vol. 23, pp. 2829–2846.

    Article  CAS  PubMed  Google Scholar 

  • Morris, K.A. and Gold, P.E., Age-related impairments in memory and in CREB and pCREB expression in hippocampus and amygdala following inhibitory avoidance training, Mech. Ageing Dev., 2012, vol. 133, pp. 291–299.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller, D., Toni, N., and Buchs, P.A., Spine changes associated with long-term potentiation, Hippocampus, 2000, vol. 10, pp. 596–604.

    Article  CAS  PubMed  Google Scholar 

  • Murakoshi, H. and Yasuda, R., Postsynaptic signaling during plasticity of dendritic spines, Trends Neurosci., 2012, vol. 35, pp. 135–143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagerl, U.V., Eberhorn, N., Cambridge, S.B., and Bonho-effer, T., Bidirectional activity-dependent morphological plasticity in hippocampal neurons, Neuron, 2004, vol. 44, pp. 759–767.

    Article  PubMed  Google Scholar 

  • Nakazawa, T., Kuriu, T., Tezuka, T., et al., Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTP-ase-activating protein, p250GAP, J. Neurochem., 2008, vol. 105, pp. 1384–1393.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, E.D., Kavalali, E.T., and Monteggia, L.M., Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation, J. Neurosci., 2008, vol. 28, pp. 395–406.

    Article  CAS  PubMed  Google Scholar 

  • O’Riordan, K.J., Huang, I.C., Pizzi, M., et al., Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors, J. Neurosci., 2006, vol. 26, pp. 4870–4879.

    Article  PubMed  Google Scholar 

  • Park, P., Volianskis, A., and Sanderson, T.M., NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation, Philos. Trans. R. Soc., B, 2013, vol. 369, no. 1633. https://www.ncbi.nlm.nih.gov/pubmed/24298134

    Google Scholar 

  • Petrini, E.M., Lu, J., Cognet, L., et al., Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation, Neuron, 2009, vol. 63, pp. 92–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puckett, R.E. and Lubin, F.D., Epigenetic mechanisms in experience-driven memory formation and behavior, Epigenomics, 2011, vol. 3, pp. 649–664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao, P., Benito, E., and Fischer, A., MicroRNAs as biomarkers for CNS disease, Front. Mol. Neurosci., 2013, vol. 6, p. 39.

  • Reichardt, L.F., Neurotrophin-regulated signaling pathways, Philos. Trans. R. Soc., B, 2006, vol. 361(1473), pp. 1545–1564.

    Article  CAS  Google Scholar 

  • Roth, T.L., Lubin, F.D., Funk, A.J., and Sweatt, J.D., Lasting epigenetic influence of early-life adversity on the BDNF gene, Biol. Psychiatry, 2009, vol. 65, pp. 760–769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roth, T.L. and Sweatt, J.D., Regulation of chromatin structure in memory formation, Curr. Opin. Neurobiol., 2009, vol. 19, pp. 336–342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouaux, C., Loeffler, J.P., and Boutillier, A.L., Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders, Biochem. Pharmacol., 2004, vol. 68, pp. 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Segal, M., Dendritic spines and long-term plasticity, Nat. Rev. Neurosci., 2005, vol. 6, pp. 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, M. and Hoogenraad, C.C., The postsynaptic architecture of excitatory synapses: a more quantitative view, Annu. Rev. Biochem., 2007, vol. 76, pp. 823–847.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington, C.S., The Integrative Action of the Nervous System, New Haven Yale Univ. Press, 1906, p. 18.

    Google Scholar 

  • Sherry, J.M. and Crowe, S.F., Inhibition of cyclin-depen-dent kinase 5 by roscovitine impairs memory consolidation and reconsolidation in the day-old chick, Pharmacol. Biochem. Behav., 2008, vol. 91, pp. 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko, K.G., Danilova, A.B., and Grinkevich, L.N., Post-translational modification of histone H3 at consolidation and re-consolidation of memory in Helix mollusk, Vestn. Vavilov. O-va Genet. Selekts., 2009, vol. 13, pp. 723–729.

    Google Scholar 

  • Si, J., Yang, J., Xue, L., et al., Activation of NF-kB in baso-lateral amygdala is required for memory reconsolidation in auditory fear conditioning, PLoS One, 2012, vol. 7, p. e43973.

  • Steiner, P., Higley, M.J., Xu, W, et al., Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity, Neuron, 2008, vol. 60, pp. 788–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsankova, N.M., Berton, O., Renthal, W., et al., Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action, Nat. Neurosci., 2006, vol. 9, pp. 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Valnegri, P., Sala, C., and Passafaro, M., Synaptic dysfunction and intellectual disability, Adv. Exp. Med. Biol., 2012, vol. 970, pp. 433–449.

    Article  CAS  PubMed  Google Scholar 

  • Valor, L.M., Viosca, J., Lopez-Atalaya, J.P., and Barco, A., Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders, Curr. Pharm. Des., 2013, vol. 19, pp. 5051–5064.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whittle, N. and Singewald, N., HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem. Soc. Trans., 2014, vol. 42, pp. 569–581.

    CAS  PubMed  Google Scholar 

  • Yoon, K.J., Lee, H.R., Jo, Y.S., et al., Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway, Mol. Brain, 2012, vol. 5, pp. 40–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, J., Little, C.J., Tremmel, D.M., et al., Notch-inducible hyperphosphorylated CREB and its ultradian oscillation in long-term memory formation, J. Neurosci., 2013, vol. 33, pp. 12825–12834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, Q., Homma, K.J., and Poo, M.M., Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses, Neuron, 2004, vol. 44, pp. 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Zovkic, I.B., Guzman-Karlsson, M.C., and Sweatt, J.D., Epigenetic regulation of memory formation and maintenance, Learn. Mem., 2013, vol. 20, pp. 61–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Additional information

Original Russian Text © O.A. Gomazkov, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 6, pp. 545–562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomazkov, O.A. How do signaling molecules organize higher brain functions?. Biol Bull Rev 5, 281–295 (2015). https://doi.org/10.1134/S2079086415040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415040015

Keywords

Navigation