Skip to main content

Neurobiological Principles: Neurotransmitters

  • Living reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

To integrate sensory and memory information, to control behavior, and to regulate various metabolic processes in favor of homeostasis, the central nervous system has to perform a huge amount of computations at once. This task is fulfilled by intra- and intercellular signaling cascades driven by a sophisticated network of highly connected neural cells. Most prominently, the release of neurotransmitters into the synaptic cleft is considered to be the key element core of neuronal intercellular communication. This core process of neuronal communication makes the synapse the substantial unit of neurotransmission. Consequently, neurons are thought to establish the foundation of efficient communication within their networks by strengthening and promoting the molecular structures of this functional unit. In the classic view of chemical neurotransmission, the synapse requires (1) the availability for synthesis of the respective neurotransmitter; (2) an activity-responsive, tightly regulated vesicular release machinery on the presynaptic side; (3) postsynaptic receptors, which are selectively activated upon binding by neurotransmitters and subsequently trigger intracellular signaling cascades; and (4) mechanisms to successfully terminate neurotransmission by removal of neurotransmitters from their site of action. With advanced experimental methods and interdisciplinary research approaches, our knowledge on neurotransmission is constantly growing. As a result, the once classical view on neurotransmission is changing in the light of new insights into regulation and organization of synaptic activity. The following sections first give a brief overview on elements determining neurotransmission, the axon initial segment, and presynaptic cytomatrix active zone, before focusing on simultaneous release of two chemically distinct neurotransmitters and neurotransmitter activity beyond synaptic structures (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham WC. How long will long-term potentiation last? Phil Trans R Soc Lond B. 2003;358:735–44.

    Article  Google Scholar 

  • Adrover MF, Shin JH, Alvarez VA. Glutamate and dopamine transmission from midbrain dopamine neurons share similar release properties but are differentially affected by cocaine. J Neurosci. 2014;34:3183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastas JN, Shi Y. Histone Serotonylation: can the brain have “happy” chromatin? Mol Cell. 2019;74(3):418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. 2014;81:728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader M. Serotonylation: serotonin signaling and epigenetics. Front Mol Neurosci. 2019;12:288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballestar E, Abad C, Franco L. Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem. 1996;271:18817–24.

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Root DH, Zhang S, Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat. 2016;73:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A. 2002;99(20):13222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzari AH, Parri HR. Neuromodulators and long-term synaptic plasticity in learning and memory: a steered-glutamatergic perspective. Brain Sci. 2019;9(11):300.

    Article  CAS  PubMed Central  Google Scholar 

  • Bekar LK, He W, Nedergaard M. Locus coeruleus α-adrenergic–mediated activation of cortical astrocytes in vivo. Cereb Cortex. 2008;18(12):2789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bérubé-Carrière N, Riad M, Dal Bo G, Lévesque D, Trudeau LE, Descarries L. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol. 2009;517:873–91.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron. 2014;82:444–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramham CR. Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol. 2008;18:524–31.

    Article  CAS  PubMed  Google Scholar 

  • Brockett AT, Kane GA, Monari PK, Briones BA, Vigneron P-A, Barber GA, Bermudez A, Dieffenbach U, Kloth AD, Buschman TJ, Gould E. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS One. 2018;13(4):e0195726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broussard J. Co-transmission of dopamine and glutamate. J Gen Physiol. 2011;139:93–6.

    Article  CAS  Google Scholar 

  • Caroni P, Donato F, Muller D. Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci. 2012;13:478–90.

    Article  CAS  PubMed  Google Scholar 

  • Chamberland S, Tóth K. Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling. The Journal of Physiology 2016;594 (4):825–835.

    Google Scholar 

  • Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 2004;447(5):519–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Petit EI, Dobrenis K, Sze JY. Spatiotemporal SERT expression in cortical map development. Neurochem Int. 2016;98:129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. J Cell Biol. 2013;203(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol. 2005;37(5):942–6.

    Article  CAS  PubMed  Google Scholar 

  • Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80(3):691–703.

    Article  CAS  PubMed  Google Scholar 

  • Chuhma N, Mingote S, Moore H, Rayport S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron. 2014;81:901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  • Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem. 2004;88:1398–405.

    Article  CAS  PubMed  Google Scholar 

  • Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, Clemetson KJ, Alberio L. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 2002;415:175–9.

    Article  CAS  PubMed  Google Scholar 

  • Daws LC. Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther. 2009;121(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  • De Pittà M, Brunel N, Volterra A. Astrocytes: orchestrating synaptic plasticity? Neuroscience. 2016;323:43–61.

    Article  PubMed  CAS  Google Scholar 

  • Doyle M, Kiebler MA. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 2011;30(17):3540–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresbach T, Qualmann B, Kessels MM, Garner CC, Gundelfinger ED. The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci. 2001;58(1):94–116.

    Article  CAS  PubMed  Google Scholar 

  • Dugué GP, Dumoulin A, Triller A, Diedonné S. Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci. 2005;25:6490–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrelly LA, Robert E. Thompson, Shuai Zhao, Ashley E. Lepack, Yang Lyu, Natarajan V. Bhanu, Baichao Zhang, Yong-Hwee E. Loh, Aarthi Ramakrishnan, Krishna C. Vadodaria, Kelly J. Heard, Galina Erikson, Tomoyoshi Nakadai, Ryan M. Bastle, Bradley J. Lukasak, Henry Zebroski, Natalia Alenina, Michael Bader, Olivier Berton, Robert G. Roeder, Henrik Molina, Fred H. Gage, Li Shen, Benjamin A. Garcia, Haitao Li, Tom W. Muir, Ian Maze Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 2019;567 (7749):535–539.

    Google Scholar 

  • Fortin GM, Bourque MJ, Mendez JA, Leo D, Nordenankar K, Birgner C, Arvidsson E, Rymar VV, Bérubé-Carrière N, Claveau AM, et al. Glutamate corelease promotes growth and survival of midbrain dopamine neurons. J Neurosci. 2012;32:17477–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Zhang L. Serotonylation: a novel histone H3 marker. Signal Transduct Target Ther. 2019;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO. Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem Res. 2015;40(12):2600–14.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan A, Israely I, Huang SY, Tonegawa S. The dendritic branch is the preferred integrative unit for protein synthesis- dependent LTP. Neuron. 2011;69:132–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graff J, Kim D, Dobbin MM, Tsai LH. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev. 2011;91:603–49.

    Article  CAS  PubMed  Google Scholar 

  • Granger AJ, Wallace ML, Sabatini BL. Multi-transmitter neurons in the mammalian central nervous system. Curr Opin Neurobiol. 2017;45:85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature. 2010;465(7301):1070–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada MS, Goethals S, de Vries SI, Brette R, Kole MH. Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential. Proc Natl Acad Sci U S A. 2016;113(51):14841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hnasko TS, Edwards RH. Neurotransmitter corelease: mechanism and physiological role. Annu Rev Physiol. 2012;74:225–43.

    Article  CAS  PubMed  Google Scholar 

  • Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron. 2010;65:643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    Article  CAS  PubMed  Google Scholar 

  • Hoerbelt P, Lindsley TA, Fleck MW. Dopamine directly modulates GABAA receptors. J Neurosci. 2015;35(8):3525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006;23:3375–84.

    Article  PubMed  Google Scholar 

  • Hsu WC, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. Front Psych. 2014;5:109.

    Google Scholar 

  • Hummerich R, Thumfart JO, Findeisen P, Bartsch D, Schloss P. Transglutaminase-mediated transamidation of serotonin, dopamine and noradrenaline to fibronectin: evidence for a general mechanism of monoaminylation. FEBS Lett. 2012;586:3421–8.

    Article  CAS  PubMed  Google Scholar 

  • Hummerich R, Costina V, Findeisen P, Schloss P. Monoaminylation of fibrinogen and glia-derived proteins: indication for similar mechanisms in posttranslational protein modification in blood and brain. ACS Chem Neurosci. 2015;6:1130–6.

    Article  CAS  PubMed  Google Scholar 

  • Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience. 2018;368:268–82.

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN, Brownfield MS Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature 1980;288 (5789):380–382.

    Google Scholar 

  • Jan YN, Jan LY, Kuffler SW. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A. 1979;76:1501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MD. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron. 1994;12:433–42.

    Article  CAS  PubMed  Google Scholar 

  • Jonas P, Bischofberger J, Sandkühler J. Corelease of two fast neurotransmitters at a central synapse. Science. 1998;281:419–24.

    Article  CAS  PubMed  Google Scholar 

  • Joyce MP, Rayport S. Mesoaccumbens dopamine neuron synapses reconstructed in vitro are glutamatergic. Neuroscience. 2000;99:445–56.

    Article  CAS  PubMed  Google Scholar 

  • Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci. 2015 Jan;16(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  • Kawano M, Kawasaki A, Sakata-Haga H, Fukui Y, Kawano H, Nogami H, Hisano S. Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J Comp Neurol. 2006;498:581–92.

    Article  CAS  PubMed  Google Scholar 

  • Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci. 2008;28(18):4635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai TS, Lin CJ, Greenberg CS. Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids. 2017;49:501–15.

    Article  CAS  PubMed  Google Scholar 

  • Lazarevic V, Pothula S, Andres-Alonso M, Fejtova A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front Cell Neurosci. 2013;7:244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leterrier C. The axon initial segment: an updated viewpoint. J Neurosci. 2018;38(9):2135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Zipursky SL. Molecular cell biology: section 21.4. Neurotransmitters, synapses, and impulse transmission. 4th ed. New York: W. H. Freeman; 2000.

    Google Scholar 

  • Mendez JA, Bourque MJ, Dal Bo G, Bourdeau ML, Danik M, Williams S, Lacaille JC, Trudeau LE. Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J Neurosci. 2008;28:6309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi Z, Si T, Kapadia K, Li Q, Muma NA. Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. Neuropharmacology. 2017;117:93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muma NA, Mi Z. Serotonylation and transamidation of other monoamines. ACS Chem Neurosci. 2015;6(7):961–9.

    Article  CAS  PubMed  Google Scholar 

  • Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98(3):466–81.

    Article  CAS  PubMed  Google Scholar 

  • Onoa B, Li H, Gagnon-Bartsch JA, Elias LA, Edwards RH. Vesicular monoamine and glutamate transporters select distinct synaptic vesicle recycling pathways. J Neurosci. 2010;30:7917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst M, Braganza O, Dannenberg H, Hu W, Pothmann L, Rosen J, Mody I, van Loo K, Deisseroth K, Becker AJ, Schoch S, Beck H. Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron. 2016;90:853–65.

    Article  CAS  PubMed  Google Scholar 

  • Petersen AV, et al. Plasticity of the axon initial segment: fast and slow processes with multiple functional roles. Neuroscientist. 2017;23(4):364–73.

    Article  PubMed  Google Scholar 

  • Pfeiffer BE, Huber KM. Current advances in local protein synthesis and synaptic plasticity. J Neurosci. 2006;26:7147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirttimaki TM, Sims RE, Saunders G, Antonio SA, Codadu NK, Parri HR. Astrocyte-mediated neuronal synchronization properties revealed by false gliotransmitter release. J Neurosci. 2017;37:9859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plenz D, Kitai ST. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J Neurosci. 1998;18(1):266–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo K, Goda Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron. 2010;66(3):337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001. Increased Conduction Velocity as a Result of Myelination.

    Google Scholar 

  • Quentin E, Belmer A, Maroteaux L. Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action. Front Neurosci. 2018;12:982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reymann KG, Frey JU. The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology. 2007;52:24–40.

    Article  CAS  PubMed  Google Scholar 

  • Russo AF. Overview of neuropeptides: awakening the senses? Headache. 2017;57(Suppl 2):37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar NK, Clarke DD, Waelsch H. An enzymically catalyzed incorporation of amines into proteins. Biochim Biophys Acta. 1957;25:451–2.

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Edwards RH. Functional implications of neurotransmitter co-release: glutamate and GABA share the load. Curr Opin Pharmacol. 2006;6:114–9.

    Article  CAS  PubMed  Google Scholar 

  • Sossin WS. Isoform specificity of protein kinase Cs in synaptic plasticity. Learn Mem. 2007;14:236–46.

    Article  CAS  PubMed  Google Scholar 

  • Strata P, Harvey R. Dale’s principle. Brain Res Bull. 1999;50(5–6):349–50.

    Article  CAS  PubMed  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci. 2010;30:8229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Südhof TC. The presynaptic active zone. Neuron. 2012;75(1):11–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S. Dopamine neurons make glutamatergic synapses in vitro. J Neurosci. 1998;18:4588–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton MA. Homeostatic plasticity: single hippocampal neurons see the light. Neuron. 2010;68(3):326–8.

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Schuman EM. Partitioning the synaptic landscape: distinct microdomains for spontaneous and spike-triggered neurotransmission. Sci Signal. 2009;2(65):pe19.

    Article  PubMed  CAS  Google Scholar 

  • Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General principles of neuronal co-transmission: insights from multiple model systems. Front Neural Circuits. 2019;12:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14:311–7.

    Article  CAS  PubMed  Google Scholar 

  • Taber KH, Hurley RA. Volume transmission in the brain: beyond the synapse. J Neuropsychiatry Clin Neurosci. 2014;26(1):iv, 1–4.

    Article  PubMed  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci. 2010;30:7105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non- canonical release of GABA. Nature. 2012;490:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Oh W-J, Gu C, Sabatini BL. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. Elife. 2014;3:e01936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaaga CE, Borisovska M, Westbrook GL. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol. 2014;29:25–32.

    Article  CAS  PubMed  Google Scholar 

  • van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012;76(1):98–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vizi ES, Kiss JP, Lendvai B. Nonsynaptic communication in the central nervous system. Neurochem Int. 2004;45(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  • Volman V, Gerkin RC. Synaptic scaling stabilizes persistent activity driven by asynchronous neurotransmitter release. Neural Comput. 2011;23(4):927–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell. 2003;115:851–62.

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Stahlberg S, Vowinkel J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modifications to monoaminylation deregulation diseases. FEBS J. 2011;278:470–4755.

    Article  CAS  Google Scholar 

  • Wang Y, Wang M, Yin S, Jang R, Wang J, Xue Z, Xu T. NeuroPep: a comprehensive resource of neuropeptides. Database (Oxford). 2015;2015:bav038. https://doi.org/10.1093/database/bav038

  • Wefelmeyer W, Cattaert D, Burrone J. Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc Natl Acad Sci U S A. 2015;112(31):9757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron. 2006;50(4):575–87.

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Kuba H. Structural and functional plasticity at the axon initial segment. Front Cell Neurosci. 2016;10:250. eCollection 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Qi J, Li X, Wang H-L, Britt JP, Hoffman AF, Bonci A, Lupica CR, Morales M. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Lau .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hampel, L., Lau, T. (2020). Neurobiological Principles: Neurotransmitters. In: Riederer, P., Laux, G., Mulsant, B., Le, W., Nagatsu, T. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-56015-1_365-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56015-1_365-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56015-1

  • Online ISBN: 978-3-319-56015-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics