Skip to main content
Log in

Plant peroxisomes: The role in metabolism of reactive oxygen species and the processes they mediate

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Modern ideas on the biogenesis of plant peroxisomes, their involvement in the production and detoxification of reactive oxygen species, and the role in the processes they mediate are discussed. The data on the proliferation and degradation of these organelles in the cell during the oxidative stress and on their involvement in the generation of signaling molecules are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammar, E.D., Rodriguez-Cerezo, E., Shaw, J.G., and Pirone, T.P., Association of virions and coat protein of tobacco vein mottling potyvirus with cylindrical inclusions in tobacco cells, Phytopathology, 1994, vol. 84, pp. 520–524.

    Article  Google Scholar 

  • Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant. Biol., 2004, vol. 55, pp. 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Baranenko, V.V., A role of superoxide dismutase in the plant cells, Tsitologiya, 2006, vol. 48, no. 6, pp. 465–474.

    CAS  Google Scholar 

  • Belitser, N.V., Lysosome system and microbodies in the plant and animal cells, Extended Abstract of Doctoral (Biol.) Dissertation, Leningrad, 1978.

    Google Scholar 

  • Charlton, W.L., Matsui, K., Johnson, B., et al., Saltinduced expression of peroxisome-associated genes requires components of the ethylene, jasmonate and abscisic acid signaling pathways, Plant Cell Environ., 2005, vol. 28, pp. 513–524.

    Article  CAS  Google Scholar 

  • Corpas, F.J., Barroso, J.B., and del Rio, L.A., Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells, Trends Plant Sci., 2001, vol. 6, pp. 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Corpas, F.J., de la Colina, C., Sanchez-Rasero, F., and del Rio, L.A., A role for leaf peroxisomes in the catabolism of purines, J. Plant Physiol., 1997, vol. 151, pp. 246–250.

    Article  CAS  Google Scholar 

  • Corpas, F.J., Pedrajas, J.R., Sandalio, L.M., et al., Localization of peroxiredoxin in peroxisomes from pea leaves, Free Radical Res., 2003, suppl. 2, vol. 37, p. 19.

    Article  Google Scholar 

  • Corpas, F.J., Sandalio, L.M., Brown, M.J., et al., Identification of porin-like polypeptide(s) in the boundary membrane of oilseed glyoxysomes, Plant Cell Physiol., 2000, vol. 41, pp. 1218–1228.

    CAS  PubMed  Google Scholar 

  • Corpas, F.J., Palma, J.M., Sandalio, L.M., et al., Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativum L.) leaves, J. Plant Physiol., 2008, vol. 165, pp. 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  • De Duve, C. and Baudhuin, P., Peroxysomes (microbodies and related particles), Physiol. Rev., 1966, vol. 46, pp. 323–357.

    PubMed  Google Scholar 

  • Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C.J., Nitric oxide function as a signal in plant disease resistance, Nature, 1998, vol. 394, pp. 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Delledonne, M., Zeier, J., Marocco, A., and Lamb, C.J., Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 13454–13459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • del Rio, L.A., Corpas, F.J., Sandalio L.M., et al., Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes, J. Exp. Bot., 2002, vol. 53, pp. 1255–1272.

    Article  PubMed  Google Scholar 

  • del Rio, L.A., Corpas, F.J., Sandalio L.M., et al., Plant peroxisomes, reactive oxygen metabolism and nitrix oxide, IUBMB Life., 2003, vol. 55, pp. 71–81.

    Article  PubMed  Google Scholar 

  • del Rio, L.A., Pastori, G.M., Palma, J.M., et al., The activated oxygen role of peroxisomes in senescence, Plant Physiol., 1998, vol. 116, pp. 1195–1200.

    Article  PubMed Central  PubMed  Google Scholar 

  • del Rio, L.A., Sandalio L.M., Corpas, F.J., et al., Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling, Plant Physiol., 2006, vol. 141, pp. 330–335.

    Article  PubMed Central  PubMed  Google Scholar 

  • del Rio, L.A., Sandalio L.M., Palma, J.M., et al., Metabolism of oxygen radicals in peroxisomes and cellular implications, Free Radical Biol. Med., 1992, vol. 13, pp. 557–580.

    Article  Google Scholar 

  • Distefano, S., Palma, J. M, Gomez, M., and del Rio, L.A., Characterization of endoproteases from plant peroxisomes, Biochem. J., 1997, vol. 327, pp. 399–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Distefano, S., Palma, J.M., McCarthy, I., and del Rio, L.A., Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves, Planta, 1999, vol. 209, pp. 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y.Y., Wang, P.C., Chen, J., and Song, C.P., Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana, J. Integr. Plant Biol., 2008, vol. 50, pp. 1318–1326.

    Article  CAS  PubMed  Google Scholar 

  • Eubel, H., Meyer, E.H., Taylor, N.L., et al., Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes, Plant Physiol., 2008, vol. 148, pp. 1809–1829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan, J., Quan, S., Orth, T., et al., The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development, Plant Physiol., 2005, vol. 139, pp. 231–239.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gechev, T.S. and Hille, J., Hydrogen peroxide as a signal controlling plant programmed cell death, J. Cell Biol., 2005, vol. 168, pp. 17–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldfischer, S. and Reddy, J.K., Peroxisomes (microbodies) in cell pathology, Int. Rev. Exp. Pathol., 1984, vol. 26, pp. 45–84.

    CAS  PubMed  Google Scholar 

  • Grune, T., Reinheckek, T., and Davies, K.J.A., Degradation of oxidized proteins in mammalian cells, FASEB J., 1997, vol. 11, pp. 526–534.

    CAS  PubMed  Google Scholar 

  • Harper, J.F., Breton, G., and Harmon, A., Decoding Ca2+ signals through plant protein kinases, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 263–288.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, M. and Nishimura, M., Entering a new era of research on plant peroxisomes, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Helm, M., Lück, C., Prestele, J., et al., Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 11501–11506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horling, F., Köning, J., and Dietz, K.J., Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins, Plant Physiol. Biochem., 2002, vol. 40, pp. 491–499.

    CAS  Google Scholar 

  • Hruban, Z. and Rechcigl, M., Jr., Microbodies and Related Particles. Morphology, Biochemistry, and Physiology, New York: Academic, 1969.

    Google Scholar 

  • Hu, J.P., Aguirre, M., Peto, C., et al., A role for peroxisomes in photomorphogenesis and development of Arabidopsis, Science, 2002, vol. 297, pp. 405–409.

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev, A.U., Role of peroxisomes in the plant metabolism, Soros. Obraz. Zh., 2000, vol. 6, no. 12, pp. 20–26.

    Google Scholar 

  • Igamberdiev, A.U. and Lea, P.J., The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms, Phytochemistry, 2002, vol. 60, pp. 651–674.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, K., Shinozaki, K., Tena, G., et al., Mitogenactivated protein kinase cascades in plants: a new nomenclature, Trends Plant Sci., 2002, vol. 7, pp. 301–308.

    Article  CAS  Google Scholar 

  • Kamigaki, A., Mano, S., Terauchi, K., et al., Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor, Plant J., 2003, vol. 33, pp. 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Khan, B.R. and Zolman, B.K., pex5 mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis, Plant Physiol., 2010, vol. 154, pp. 1602–1615.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koh, S., Andre, A., Edwards, H., et al., Arabidopsis thaliana subcellular response to compatible Erysiphe cichoracearum infection, Plant J., 2005, vol. 44, pp. 516–529.

    Article  CAS  PubMed  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J., Functional analysis of oxidative stress-activated mitogenactivated protein kinase cascade in plants, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 2940–2945.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzniak, E. and Sklodowska, M., Fungal pathogeninduced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants, Planta, 2005, vol. 222, pp. 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Lazarow, P.B., Peroxisome biogenesis: advances and conundrums, Curr. Opin. Cell Biol., 2003, vol. 15, pp. 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Lazarow, P.B. and de Duve, C., A fatty acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by clofibrate, a hypolipidemic drug, Proc. Natl. Acad. Sci. USA, 1976, vol. 73, pp. 2043–2046.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lingard, M.J. and Bartel, B., Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import, Plant Physiol., 2009, vol. 151, pp. 1354–1365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipka, V., Dittgen, J., Bednarek, P., et al., Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis, Science, 2005, vol. 310, pp. 1180–1183.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Huertas, E., Corpas, F.J., Sandalio, L.M., and del Rio, L.A., Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation, Biochem. J., 1999, vol. 337, pp. 531–536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Huertas, E., Charlton, W.L., Johnson, B., et al., Stress induces peroxisome biogenesis genes, EMBO J., 2000, vol. 19, pp. 6770–6777.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mano, S., Nakamori, C., Nito, K., et al., The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes, Plant J., 2006, vol. 47, pp. 604–618.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, I., Romero-Puertas, M.C., Palma, J.M., et al., Cadmium induces senescence symptoms in leaf peroxisomes of pea plants, Plant Cell Environ., 2001, vol. 24, pp. 1065–1073.

    Article  CAS  Google Scholar 

  • McCarthy-Suárez, I., Gómez, M., del Río, L.A., and Palma, J.M., Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants, Biol. Plantarum., 2011, vol. 55, pp. 485–492.

    Article  Google Scholar 

  • Menke, F.L., van Pelt, J.A., Pieterse, C.M., and Klessig, D.F., Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 897–907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., and Guy, M., Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii, Plant Cell Environ., 2003, vol. 26, pp. 845–856.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Guy, M., Tal, M., and Volokita, M., Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii, J. Exp. Bot., 2004, vol. 55, pp. 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  • Moon, H., Lee, B., Choi, G., et al., NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 358–363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullen, R.T. and Trelease, R.N., The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis, Biochim. Biophys. Acta, 2006, vol. 1763, pp. 1655–1668.

    Article  CAS  PubMed  Google Scholar 

  • Nair, D.M., Purdue, P.E., and Lazarow, P.B., Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae, J. Cell Biol., 2004, vol. 167, pp. 599–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagami, H., Kiegerl, S., and Hirt, H., OMTK1, a novel MAPKKK, channel oxidative stress signaling through direct MAPK interaction, J. Biol. Chem., 2004, vol. 279, pp. 26959–26966.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, M., Hayashi, M., Kato, A., et al., Functional transformation of microbodies in higher plant cells, Cell Struct. Funct., 1996, vol. 21, pp. 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Nito, K., Hayashi, M., and Nishimura, M., Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana, Plant Cell Physiol., 2002, vol. 43, pp. 355–366.

    CAS  PubMed  Google Scholar 

  • Nyathi, Y. and Baker, A., Plant peroxisomes as a source of signaling molecules, Biochim. Biophys. Acta, 2006, vol. 1763, pp. 1478–1495.

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes, F.R., Glycosomes may provide clues to the import of peroxisomal proteins, Trends Biochem. Sci., 1988, vol. 13, pp. 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Oshima, Y., Kamigaki, A., Nakamori, C., et al., Plant catalase is imported into peroxisomes by pex5p but is distinct from typical PTS1 import, Plant Cell Physiol., 2008, vol. 49, pp. 671–677.

    CAS  PubMed  Google Scholar 

  • Palma, J.M., Sandalio L.M., Corpas, F.J., et al., Plant proteases, protein degradation, and oxidative stress: role of peroxisomes, Plant Physiol. Biochem., 2002, vol. 40, pp. 521–530.

    CAS  Google Scholar 

  • Palma, J.M., Corpas, F.J., and del Rio, L.A., Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology, Proteomics, 2009, vol. 9, pp. 2301–2312.

    Article  CAS  PubMed  Google Scholar 

  • Pastori, G.M. and del Rio, L.A., An activated-oxygenmediated role for peroxisomes in the mechanism of senescence of pea leaves, Planta, 1994a, vol. 193, pp. 385–391.

    Article  CAS  Google Scholar 

  • Pastori, G.M. and del Rio, L.A., Activated oxygen species and superoxide dismutase activity in peroxisomes from senescent pea leaves, Proc. R Soc. Edinb. Sect. B Biol., 1994b, vol. 102B, pp. 505–509.

    Google Scholar 

  • Pastori, G.M. and del Rio, L.A., Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes, Plant Physiol., 1997, vol. 113, pp. 411–418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry, R.J., Mast, F.D., and Rachubinski, R.A., Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Ds11p are involved in peroxisome biogenesis, Eukaryotic Cell., 2009, vol. 8, pp. 830–843.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rentel, M.C. and Knight, M.R., Oxidative stress-induced calcium signaling in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 1471–1479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reumann, S., Ma, C., Lemke, S., and Babujee, L., AraPerox: a database of putative Arabidopsis proteins from plant peroxisomes, Plant Physiol., 2004, vol. 136, pp. 2587–2608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reumann, S., Babujee, L., Ma, C., et al., Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms, Plant Cell, 2007, vol. 19, pp. 3170–3193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reunov, A.V., Cytopathology of the plant cell infected by viruses TMV and PVX and a problem of plant resistance, Extended Abstract of Doctoral (Biol.) Dissertation, Kiev, 1989.

    Google Scholar 

  • Reunov, A.V., Virusnyi patogenez i zashchitnye mekhanizmy rastenii (Virus Pathogenesis and the Plant Resistance Mechanisms), Vladivostok: Dal’nauka, 1999.

    Google Scholar 

  • Reunov, A.V., Lapshina, L.A., Nagorskaya, V.P., et al., Ultrastructure of leaf mesophyll cells of various soya cultivars infected by soybean mosaic virus, Tsitologiya, 2006, vol. 48, no. 3, pp. 208–215.

    CAS  Google Scholar 

  • Reunov A.V. and Lega S.N. Ultrastructural study of local lesion and surrounding tissue in Gomphrena globosa L. leaves infected by tobacco mosaic virus, Biol. Bull., 2000, vol. 27, no. 3, pp. 325–328.

    Google Scholar 

  • Reunov, A.V., Lega, S.N., Nagorskaya, V.P., and Lapshina, L.A., A subset of cells in tobacco mosaic virus (TMV)-induced local lesions in Datura stramonium L. leaves are tolerant to TMV, Cell Tissue Biol., 2011, vol. 5, no. 1, pp. 62–67.

    Article  Google Scholar 

  • Reunov, A.V. and Reunov, A.A., Liticheskaya funktsiya kletki (Lytic Function of a Cell), Moscow: Nauka, 2008.

    Google Scholar 

  • Roberts, I.M., Wang, D., Findlay, K., and Maule, A.J., Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement, Virology, 1998, vol. 245, pp. 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano, M., Romero-Puertas, M.C., Sparkes, I., et al., Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium, Free Radical Biol. Med., 2009, vol. 47, pp. 1632–1639.

    Article  Google Scholar 

  • Romero-Puertas, M.C., McCarthy, I., Sandalio, L.M., et al., Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes, Free Radical Res., 1999, vol. 31, suppl., pp. 25–31.

    Article  Google Scholar 

  • Romero-Puertas, M.C., Palma, J.M., Gomez, M., et al., Cadmium causes the oxidative modification of proteins in pea plants, Plant Cell Environ., 2002, vol. 25, pp. 677–686.

    Article  CAS  Google Scholar 

  • Sandalio, L.M., Dalurzo, H.C., Gomez, M., et al., Cadmium-induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 2001, vol. 52, pp. 2115–2126.

    CAS  PubMed  Google Scholar 

  • Schuhmann, H., Huesgen, P.F., Gietl, C., and Adamska, I., The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis, Plant Physiol., 2008, vol. 148, pp. 1847–1856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuhmann, H. and Adamska, I., Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell, Physiol. Plant., 2012, vol. 145, pp. 224–234.

    Article  CAS  PubMed  Google Scholar 

  • Sparkes, I.A., Brandizzi, F., Slocombe, S.P., et al., An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis, Plant Physiol., 2003, vol. 133, pp. 1809–1819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader, L.C., Culler, A.H., Cohen, J.D., and Bartel, B., Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings, Plant Physiol., 2010, vol. 153, pp. 1577–1586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabak, H.F., Murk, J.L., Braakman, I., and Geuze, H.J., Peroxisomes start their life in the endoplasmic reticulum, Traffic, 2003, vol. 4, pp. 512–518.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, N.L., Tan, Y.F., Jacoby, R.P., and Millar, A.H., Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes, J. Proteomics, 2009, vol. 72, pp. 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Tenberge, K.B., Ruholl, C., Heinze, M., and Eising, R., Purification and immuno-electron microscopical characterization of crystalline inclusions from plant peroxisomes, Protoplasma, 1997, vol. 196, pp. 142–154.

    Article  CAS  Google Scholar 

  • Thoms, S. and Erdmann, R., Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation, FEBS J., 2005, vol. 272, pp. 5169–5181.

    Article  CAS  PubMed  Google Scholar 

  • Titorenko, V.I. and Mullen, R.T., Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER, J. Cell Biol., 2006, vol. 174, pp. 11–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wasternack, C. and Kombrink, E., Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development, ACS Chem. Biol., 2010, vol. 5, pp. 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Yanik, T. and Donaldson, R.P., A protective association between catalase and isocitrate lyase in peroxisomes, Arch. Biochem. Biophys., 2005, vol. 435, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Zolman, B.K., Monroe-Augustin, M., Silva, I.D., and Bartel, B., Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22, Plant Cell, 2005, vol. 17, pp. 3422–3435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Reunov.

Additional information

Original Russian Text © A.V. Reunov, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 1, pp. 50–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reunov, A.V. Plant peroxisomes: The role in metabolism of reactive oxygen species and the processes they mediate. Biol Bull Rev 4, 311–322 (2014). https://doi.org/10.1134/S2079086414040082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414040082

Keywords

Navigation