Skip to main content
Log in

Analysis of Changes in the Genetic Structure of Chronically Irradiated Scots Pine Populations

  • Published:
Russian Journal of Genetics: Applied Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Data about the long-term effects of the chronic radiation exposure of forests to the radioactive trail of the Chernobyl disaster are insufficient. The method of vertical electrophoresis in PAAG is used to estimate the polymorphism of enzymes in Scots pine populations growing on the territory of Bryansk oblast, which was contaminated with radionuclides. The activity of enzymes in Scots pine seeds is estimated by spectrophotometry. The overall frequency of mutations in the isozyme loci increases with the dose rate of chronic irradiation (7–130 mGy/year), as well as some characteristics of the genetic structure of the populations. The activity of enzymes does not depend on the level of the dose absorbed by the generative organs of pine. The impact of radiation contributes to changes in the genetic structure of Scots pine populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozubov, G.M. and Taskaev, A.I., Radiobiologicheskie issledovaniya khvoinykh v raione chernobyl’skoi katastrofy (Radiobiological Studies of Conifers in the Region of the Chernobyl Disaster), Moscow: IPTs Dizain. Informatsiya. Kartografiya, 2002.

    Google Scholar 

  2. Convention on Biological Diversity, 1992.

  3. Volkova, P.Yu. and Geraskin, S.A., Enzyme polymorphism of an antioxidant system in chronically irradiated Scots pine populations, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 5, pp. 421–433. https://doi.org/10.1134/S2079059714050153

    Article  Google Scholar 

  4. ICRP, Environmental protection–the concept and use of reference animals and plants. ICRP Publication 108, Ann. ICRP, 2008, vol. 38, pp. 4–6.

  5. Sparrow, A.H. and Woodwell, G.M., Prediction of the sensitivity of plants to chronic gamma irradiation, Radiat. Bot., 1962, vol. 2, pp. 9–26. doi 10.1016/s0033-7560(62)80091-x

    Article  Google Scholar 

  6. Atlas sovremennykh i prognoznykh aspektov posledstvii avarii na Chernobyl’skoi AES na postradavshikh territoriyakh Rossii i Belarusi (ASPA Rossiya–Belarus’) (The Atlas of Recent and Predictable Aspects of Consequences of Chernobyl Accident on Polluted Territories of Russia and Belarus (ARPA Russia–Belarus)), Izrael’, Yu.A. and Bogdevich, I.M., Eds., Moscow, Minsk: Fond “Infosfera”–NIA-Priroda, 2009.

  7. Geras’kin, S.A., Oudalova, A.A. Dikareva, N.S., et al., Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident, Ecotoxicology, 2011, vol. 20, pp. 1195–208. doi 10.1007/s10646-011-0664-7

    Article  PubMed  CAS  Google Scholar 

  8. Manchenko, G.P., Handbook of Detection of Enzymes on Electrophoretic Gels, Boca Raton (Florida): CRC Press, 1994.

    Google Scholar 

  9. Bisswanger, H., Practical Enzymology, Wiley-VCH, 2004.

    Google Scholar 

  10. Zhivotovskii, L.A., Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991.

    Google Scholar 

  11. Fedorov, I.S., Kal’chenko, V.A., Igonina, E.V., and Rubanovich, A.V., Radiation and genetic consequences of irradiation of Scots pine populations in the Chernobyl accident zone, Radiats. Biol.: Radioekol., 2006, vol. 46, no. 3, pp. 268–278.

    Google Scholar 

  12. Hedrick, P.W., Genetics of Populations, Jones & Bartlett Learning, 2003, 4th ed.

    Google Scholar 

  13. Wright, S., The interpretation of population structure by F-statistics with special regard to system of mating, Evolution, 1965, vol. 19, pp. 395–420. doi 10.2307/2406450

    Article  Google Scholar 

  14. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–92. doi 10.1086/282771

    Article  Google Scholar 

  15. Volkova, P.Yu., Geras’kin, S.A., and Raevskaya, N.I., Antioxidant enzyme activities in Scots pine populations growing under chronic radiation exposure, Radiats. Biol.: Radioekol., 2014, vol. 54, no. 2, pp. 174–178.

    CAS  Google Scholar 

  16. Kazakova, E.A., Volkova, P.Yu., Geras’kin, S.A., and Pomelova, D.O., Polymorphism of glucose-6-phosphate dehydrogenase in chronically irradiated populations of Scots pine, Radiats. Biol., Radioekol., 2015, vol. 55, no. 4, pp. 389–394. doi 10.7868/S0869803115040049

    CAS  Google Scholar 

  17. Geras’kin, S.A., Fesenko, S.V., Aleksakhin, R.M., The effects of non-human species irradiation after the ChNPP accident, Radiats. Biol. Radioecol., 2006, vol. 46, no. 2, pp. 213–224.

    Google Scholar 

  18. Aleksakhin, R.M., Buldakov, L.A., Gubanov, V.A., et al., Krupnye radiatsionnye avarii: Posledstviya i zashchitnye mery (Major Radiation Accidents: Consequences and Protective Measures), Moscow: IzdAT, 2001.

    Google Scholar 

  19. Geras’kin, S.A., Vanina, Yu.S., Dikarev, V.G., et al., Genetic variability in populations of Scots pine from Bryansk oblast exposed to radioactive contamination as a result of the Chernobyl accident, Radiats. Biol., Radioekol., 2009, vol. 49, no. 2, pp. 136–146.

    Google Scholar 

  20. Yudina, R.S., Genetics and phenogenetics of plant malate dehydrogenase, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2010, vol. 14, no. 2, pp. 243–254.

    Google Scholar 

  21. Matsui, M., Fowler, J.H., and Walling, L.L., Leucine aminopeptidases: Diversity in structure and function, Biol. Chem., 2006, vol. 387, pp. 1535–1544. doi 10.1515/BC.2006.191

    Article  PubMed  CAS  Google Scholar 

  22. Surso, M.V., Genetic polymorphism and genetic differentiation of north taiga populations of Scots pine, Lesn. Vestn., 2009, vol. 67, no. 4, pp. 19–23.

    Google Scholar 

  23. Hamrick, J.L., Linhart, Y.B., and Mitton, J.B., Relationships between life history characteristics and electrophoretically detectable genetic variation in plants, Ann. Rev. Ecol. Syst., 1979, vol. 10, pp. 173–200. doi 10.1146/annurev.es.10.110179.001133

    Article  Google Scholar 

  24. Pazouki, L., Shanjani, P.S., Fields, P.D., et al., Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil fertility limit characterized by nuclear and chloroplast microsatellite markers, Eur. J. Forest Res., 2016, vol. 135, pp. 161–177. doi 10.1007/s10342-015-0928-5

    Article  CAS  Google Scholar 

  25. Staszak, J., Grulke, N.E., Marrett, M.J., and Prus- Glowacki, W., Isozyme markers associated with O3 tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California, Environ. Pollut., 2007, vol. 149, pp. 366–375. doi 10.1016/j.envpol.2007.05.026

    Article  CAS  Google Scholar 

  26. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.

    Google Scholar 

  27. Korshikov, I.I. and Kalafat, L.A., Comparative study of allozyme polymorphism in groups of Scots pine (Pinus sylvestris L.) with different seed productivity, Tsitol. Genet., 2004, no. 2, pp. 9–14.

    Google Scholar 

  28. Geras’kin, S.A., Vasil’ev, D.V., and Kuz’menkov, A.G., Specific features of Scots pine seeds formation in the remote period after the Chernobyl Accident, Radiats. Biol., Radioekol., 2015, vol. 55, no. 5, pp. 539–547. doi 10.7868/S0869803115050057

    Google Scholar 

  29. Geras’kin, S.A. and Volkova, P.Yu., Genetic diversity in Scots pine populations along a radiation exposure gradient, Sci. Total Environ., 2014, vol. 496, pp. 317–327. doi 10.1016/j.scitotenv.2014.07.020

    Article  PubMed  CAS  Google Scholar 

  30. Ofitserov, M.V. and Igonina, E.V., Genetic consequences of irradiation in a Scots pine Pinus sylvestris L. population, Russ. J. Genet., 2009, vol. 45, no. 2, pp. 183–188.

    Article  CAS  Google Scholar 

  31. Banks, S.C., Cary, G.J., Smith, A.L., et al., How does ecological disturbance influence genetic diversity?, Trends Ecol. Evol., 2013, vol. 28, pp. 670–679. doi 10.1016/j.tree.2013.08.005

    Article  PubMed  Google Scholar 

  32. Smith, J.T., Willey, N.J., and Hancock, J.T., Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells, Biol. Lett., 2012, vol. 8, pp. 594–597. doi 10.1098/rsbl.2012.0150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Geras’kin.

Additional information

Original Russian Text © E.A. Kazakova, P.Yu. Volkova, S.A. Geras’kin, 2017, published in Ecologicheskaya Genetika, 2017, Vol. 15, No. 2, pp. 50–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakova, E.A., Volkova, P.Y. & Geras’kin, S.A. Analysis of Changes in the Genetic Structure of Chronically Irradiated Scots Pine Populations. Russ J Genet Appl Res 8, 124–134 (2018). https://doi.org/10.1134/S2079059718020065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059718020065

Keywords

Navigation