Skip to main content
Log in

Comparative evaluation of the genetic diversity of natural populations and clonal seed orchards of Pinus sylvestris L. and Picea × fennica (Regel) Kom. in Karelia

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The genetic diversity levels are assessed using the microsatellite loci in four native populations of Pinus sylvestris L. and Picea × fennica (Regel) Kom. for each species, as well as two fields of forest seed orchards (FSOs), growing in Karelia. As a result, high levels of the basic parameters of genetic diversity are revealed for the native populations of both species. It is found that the expected heterozygosity values are higher than the observed ones, indicating a deficiency of heterozygotes in the Karelian pine and spruce populations. The genetic diversity values found for the spruce seed orchards are much lower than for the native Picea × fennica populations, indicating an insufficient representation of the genetic pool of the species in the seed orchards. The Scots pine seed orchards are characterized by a high level of genetic diversity comparable to that in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W.T. and Joly, R.I., Genetics of allozyme variants in loblolly pine, Heredity, 1980, vol. 71, pp. 33–40.

    Article  CAS  Google Scholar 

  • Bergmann, F. and Ruetz, W., Isoenzyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations, For. Ecol. Manage., 1991, vol. 46, pp. 39–47.

    Article  Google Scholar 

  • Chaisurisri, K. and El-Kassaby, Y.A., Estimation of clonal contribution to cone and seed crops in a Sitka spruce seed orchard, Ann. Sci. For., 1993, vol. 50, pp. 461–467.

    Article  Google Scholar 

  • Conkle, M.T., Isozyme variation and linkage in six conifer species, in Proc. Symp. Is. North. Am. For. Trees and For. Ins., 1979, pp. 11–17.

    Google Scholar 

  • Danell, O., Possible gains in initial stages of national tree improvement programme using different techniques, Proc. from the Nordic Tree Breeders Meeting, 1990, pp. 11–30.

    Google Scholar 

  • Eckert, R.T., Joly, R.J., and Neale, D.B., Genetics of isozyme variants and linkage relationships among allozyme loci in 35 eastern white pine clones, Can. J. For. Res., 1981, vol. 11, pp. 573–579.

    Article  CAS  Google Scholar 

  • Ekart, A.K., Semerikova, S.A., Semerikov, V.L., et al., The use of different types of genetic markers for assessing the level of intra-species differentiation of Siberian spruce, Sib. Lesn. Zh., 2014, no. 4, pp. 84–91.

    Google Scholar 

  • El-Kassaby, Y.A. and Ritland, K., Impact of selection and breeding on the genetic diversity in Douglas-fir., Biodiv. Conserv., 1996, vol. 5, pp. 795–813.

    Article  Google Scholar 

  • Elsik, C.G., Minihan, V.T., Hall, S.E., et al., Low-copy microsatellite markers for Pinus taeda L., Genome, 2000, vol. 43, pp. 550–555.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, G. and Ekberg, I., An Introduction to Forest Genetics, Uppsala: SLU, 2001.

    Google Scholar 

  • Godt, M.J.W., Hamrick, J.L., Edwards-Burke, M.A., and Williams, J.H., Comparisons of genetic diversity in white spruce (Picea glauca) and jack pine (Pinus banksiana) seed orchards with natural populations, Can. J. For. Res., 2001, vol. 31, pp. 943–949.

    Article  Google Scholar 

  • Gomory, D., Simulation of the genetic structure and reproduction in plant populations: Short note, For. Genet., 1995, vol. 2, pp. 59–63.

    Google Scholar 

  • Goncharenko, G.G., Padutov, V.E., and Potenko, V.V., Rukovodstvo po issledovaniyu khvoinykh vidov metodom elektroforeticheskogo analiza izofermentov (Guide to the Study of Conifers by Electrophoretic Analysis of Isoenzymes), Gomel’: BelNIILKh, 1989.

    Google Scholar 

  • Guries, R. and Ledig, F.T., Genetic structure of populations and differentiation in forest trees, in Proc. Symp. Isozymes N. Am. For. Trees For. Insects, Conkle, M.T., Ed., US Dep. Agric.-For. Ser. Pac. Southwest For. Range Exp. Stn. Gen. Tech. Rep. PSW-48, 1981, pp. 42–47.

    Google Scholar 

  • Hodgetts, R.B., Aleksiuk, M.A., Brown, A., et al., Development of microsatellite markers for white spruce (Picea glauca) and related species, Theor. Appl. Genet., 2001, vol. 102, pp. 1252–1258.

    Article  CAS  Google Scholar 

  • Icgen, Y., Kaya, Z., Cengel, B., et al., Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey, For. Ecol. Manage., 2006, vol. 225, pp. 328–336.

    Article  Google Scholar 

  • Jones, T.H., Steane, D.A., Jones, R.C., et al., Effects of domestication on genetic diversity in Eucalyptus globules, For. Ecol. Manage., 2006, vol. 234, pp. 78–84.

    Article  Google Scholar 

  • Knowles, P., Comparison of isozyme variation among natural stands and plantations: Jack pine and black spruce, Can. J. For. Res., 1985, vol. 15, pp. 902–908.

    Article  CAS  Google Scholar 

  • Kravchenko, A.N., Ekart, A.K., and Larionova, A.Ya., Intraspecific variability and differentiation of natural populations of Siberian spruce (Picea obovata Ledeb.) for microsatellite loci, Mat. 4-go mezhdunar. sov. “Sokhranenie lesnykh geneticheskikh resursov Sibiri” (Proc. 4th Int. Meeting Preservation of Forest Genetic Resources of Siberia), Barnaul, 2015, pp. 69–70.

    Google Scholar 

  • Lefevre, F., Human impacts on forest genetics resources in the temperate zone: An updated review, For. Ecol. Manage., 2004, vol. 197, pp. 257–271.

    Article  Google Scholar 

  • Lesosemennoe raionirovanie osnovnykh lesoobrazuyushchikh porod v SSSR (Forest-Seed Zoning of the Main Forest-Forming Species in the USSR), Moscow: Lesnaya promyshlennost’, 1982.

  • Moran, G.F. and Bell, J.C., The origin and genetic diversity of Pinus radiate in Australia, Theor. App. Genet., 1987, vol. 73, pp. 616–622.

    Article  CAS  Google Scholar 

  • Moran, G.F., Bell, J.C., and Matheson, A.C., The genetic structure and levels of inbreeding in a Pinus radiate D. Don seed orchard, Silvae Genet., 1980, vol. 29, pp. 190–193.

    Google Scholar 

  • Mudrik, E.A., Belokon’, M.M., Belokon’, Yu.S., and Politov, D.V., Application of microsatellite markers in genogeographic studies of conifers, Mat. Vseros. konf. “Vodnye i nazemnye ekosistemy: Problemy i perspektivy issledovanii” (Proc. Conf. Water and Terrestrial Ecosystems: Problems and Prospects for Research), Vologda, 2008, pp. 78–81.

    Google Scholar 

  • Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, pp. 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall, R. and Smouse, P.E., GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, no. 6, pp. 288–295.

    Article  Google Scholar 

  • Potenko, V.V., Il’inov, A.A., and Goncharenko, G.G., Izuchenie geneticheskoi differentsiatsii populyatsii eli v Karelii s ispol’zovaniem metoda izofermentnogo analiza. Selektsiya i semenovodstvo v Karelii (The Study of Genetic Differentiation of Spruce Populations in Karelia Using the Method of Isoenzyme Analysis. Breeding and Seed-Growing in Karelia), Petrozavodsk: KarNTs RAN, 1993, pp. 66–76.

    Google Scholar 

  • Potokina, E.K., Orlova, L.V., Vishnevskaya, M.S., et al., Genetic differentiation of spruce populations in the northwest of Russia according to the results of marking microsatellite loci, Ekol. Genet., 2012, vol. X, no. 2, pp. 40–49.

    Google Scholar 

  • Rajora, O.P., Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce, Theor. Appl. Genet., 1999, vol. 99, pp. 954–961.

    Article  CAS  Google Scholar 

  • Rajora, O.P., Rahman, M.H., Dayanandan, S., and Messeler, A., Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species, Theor. Appl. Genet., 2001, vol. 264, pp. 871–882.

    CAS  Google Scholar 

  • Ryu, J.B. and Eckert, R.T., Foliar isozyme variation in twenty-seven provenances of Pinus sylvestris L.: Genetic diversity and population structure, Proc. 28th Northeast. For. Tree Improv. Conf., 1983, pp. 249–261.

    Google Scholar 

  • Scotti, I., Magni, F., Pagila, G.P., and Morgante, M., Trinucleotide microsatellites in Norway spruce (Picea abies): Their features and development of molecular markers, Theor. Appl. Genet., 2002, vol. 106, pp. 40–50.

    Article  CAS  PubMed  Google Scholar 

  • Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy. The Principles and Practice of Numerical Classification, San Francisco: W. H. Freeman and Co, 1973.

    Google Scholar 

  • Soranzo, N., Provan, J., and Powell, W., Characterization of microsatellite loci in Pinus sylvestris L., Mol. Ecol., 1998, vol. 7, pp. 1260–1261.

    CAS  PubMed  Google Scholar 

  • Stefenon, V.M., Gailing, O., and Finkeldey, R., Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia), For. Ecol. Manage., 2008, vol. 255, pp. 2718–2725.

    Article  Google Scholar 

  • Stoehr, M.U. and El-Kassaby, Y.A., Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia, Theor. Appl. Genet., 1997, vol. 94, pp. 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, B.R., Macdonald, S.E., Hicks, M., et al., Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers, Theor. Appl. Genet., 1999, vol. 98, pp. 793–801.

    Article  Google Scholar 

  • Ukazaniya po lesnomu semenovodstvu v Rossiiskoi Federatsii (Guidelines for Forest Seed Production in the Russian Federation), Moscow: VNIITslesresurs, 2000.

  • Wellman, H., Ritland, C., and Ritland, K., Genetic effects of domestication in western hemlock Tsuga heterophylla, For. Genet., 2003, vol. 10, pp. 229–239.

    Google Scholar 

  • Williams, C.G. and Hamrick, J.L., Genetic diversity levels in an advanced generation Pinus taeda L. program measured using molecular markers, FAO For. Genet. Resour. Newslett., 1995, vol. 23, pp. 45–50.

    Google Scholar 

  • Yanbaev, Yu.A., Trenin, V.V., Shigapov, Z.Kh., et al., Genetic variability and differentiation of Scots pine (Pinus sylvestris) in the territory of Karelia, in Nauchnye osnovy selektsii drevesnykh rastenii Severa (Scientific Foundations of Breeding of Woody Plants of the North), Petrozavodsk: KarNTs RAN, 1998, pp. 25–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ilinov.

Additional information

Original Russian Text © A.A. Ilinov, B.V. Raevsky, 2015, published in Ecologicheskaya Genetika, 2015, Vol. 13, No. 4, pp. 55–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilinov, A.A., Raevsky, B.V. Comparative evaluation of the genetic diversity of natural populations and clonal seed orchards of Pinus sylvestris L. and Picea × fennica (Regel) Kom. in Karelia. Russ J Genet Appl Res 7, 607–616 (2017). https://doi.org/10.1134/S2079059717060065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717060065

Keywords

Navigation