Skip to main content
Log in

Mechanisms regulating ethylene signal transduction in plants

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Plant hormone ethylene regulates a wide range of physiological processes during plant development and coordinates plant responses to stresses. Ethylene controls important characteristics of agricultural crops such as the fruit ripening rate and plant resistance to adverse conditions. Understanding the molecular mechanisms of ethylene’s action is one of the actual questions in both the fundamental and applied contexts. Ethylene biosynthesis from methionine and the main steps of the transduction of the ethylene signal from membrane receptors to effector genes have been studied in detail and widely discussed in many reviews. At the same time, the genetic regulation of these two processes has been poorly studied, although it is responsible for the rapid and accurate reaction of plants to various endogenous and external stimuli and for the diversity of the physiological responses of plants to ethylene. This review summarizes the information about the regulatory mechanisms of ethylene biosynthesis and signal transduction. The key factors of transcriptional and post-translational regulation, which control the expression and stability of the main components of the biosynthesis and signaling pathways of ethylene, and the multiple feedbacks supplementing the linear model of ethylene’s signaling pathway are described. Special attention is paid to the role of the ethylene crosstalk with other plant hormones. Different mechanisms of hormonal interaction are illustrated by examples of the synergy or antagonism between ethylene and auxin, jasmonates, cytokinins, and brassinosteroids. The possible molecular bases of the diversity of the physiological responses to ethylene are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, S., Nguyen, M.D., Chow, W., and Theologis, A., ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected], J. Biol. Chem., 1995, vol. 270, no. 32, pp. 19093–19099.

    Article  CAS  PubMed  Google Scholar 

  • Abeles, F.B., Morgan, P.W., and Saltveit, M.E., Ethylene in Plant Biology, San Diego: Acad. Press, 1992.

    Google Scholar 

  • Alexander, L. and Grierson, D., Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening, J. Exp. Bot., 2002, vol. 53, no. 377, pp. 2039–2055.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M., and Ecker, J.R., Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 5, pp. 2992–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, F., Zhang, X., Zhu, Z., Ji, Y., He, W., Jiang, Z., Li, M., and Guo, H., Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings, Cell Res., 2012, vol. 22, no. 5, pp. 915–927. doi 10.1038/cr.2012.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., Zhang, S., Ecker, J.R., and Guo, H., Ethylene-induced stabilization of ETHYLENEINSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis, Plant Cell, 2010, vol. 22, no. 7, pp. 2384–2401. doi 10.1105/tpc.110.076588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary, A.J., Liu, W., and Howell, S.H., Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings, Plant Physiol., 1995, vol. 107, no. 4, pp. 1075–1082. doi 10.1104/pp.107.4.1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae, H.S., Faure, F., and Kieber, J.J., The eto1, eto2 and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS protein, Plant Cell, 2003, vol. 15, no. 2, pp. 545–559. doi 10.1105/tpc.006882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, K.N., Zhong, S., Weirauch, M.T., Hon, G., Pelizzola, M., Li, H., Huang, S.S.C., Schmitz, R.J., Urich, M.A., Kuo, D., Nery, J.R., Qiao, H., Yang, A., Jamali, A., Chen, H., Ideker, T., Ren, B., Bar-Joseph, Z., Hughes, T.R., and Ecker, J.R., Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis, eLife, 2013, vol. 2. doi 10.7554/eLife.00675

  • Chen, Y.F., Shakeel, S.N., Bowers, J., Zhao, X.C., Etheridge, N., and Schaller, G.E., Ligand-induced degradation of the ethylene receptor ETR2, J. Biol. Chem., 2007, vol. 282, no. 34, pp. 24752–24758.

    Article  CAS  PubMed  Google Scholar 

  • Chernykh, O.A., Levitskii, V.G., Omel’yanchuk, N.A., and Mironova, V.V., Computer analysis and functional annotation of binding sites of transcription factors AP2/ERF in the genome of Arabidopsis thaliana L., Vavilovskii Zh. Genet. Sel., 2014, vol. 18, no. 4/2, pp. 887–897.

    Google Scholar 

  • Chilley, P.M., Casson, S.A., Tarkowski, P., Hawkins, N., Wang, K.L., Hussey, P.J., Beale, M., Ecker, J.R., Sandberg, G.K., and Lindsey, K., The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling, Plant Cell, 2006, vol. 18, no. 11, pp. 3058–3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.H. and Yoo, S.D., Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus, Front. Plant Sci., 2015, vol. 5, p. 733. doi 10.3389/fpls.2014.00733

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz, J. and Álvarez-Buylla, E.R., A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: Pathway crosstalk and noise-filtering properties, Chaos, 2006, vol. 16, no. 2. doi 10.1063/1.2189974

    Google Scholar 

  • De Paepe, A., Vuylsteke, M., Van Hummelen, P., Zabeau, M., and Van Der Straeten, D., Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis, Plant J., 2004, vol. 39, no. 4, pp. 537–559. doi 10.1111/j.1365-313X.2004.02156.x

    Article  PubMed  Google Scholar 

  • Dong, C.H., Rivarola, M., Resnick, J.S., Maggin, B.D., and Chang, C., Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling, Plant J., 2008, vol. 53, no. 2, pp. 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Dugardeyn, J., Vandenbussche, F., and Van Der Straeten, D., To grow or not to grow: What can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?, J. Exp. Bot., 2008, vol. 59, no. 1, pp. 1–16. doi 10.1093/jxb/erm349

    Article  CAS  PubMed  Google Scholar 

  • Ecker, J.R., The ethylene signal transduction pathway in plants, Science, 1995, vol. 268, pp. 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression, Plant Cell, 2000, vol. 12, no. 3, pp. 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie, D.R., Geisler-Lee, J., Chen, J., and Jolley, B., Tissue- specific expression of the ethylene biosynthetic machinery regulates root growth in maize, Plant Mol. Biol., 2009, vol. 69, nos. 1–2, pp. 195–211. doi 10.1007/s11103-008-9418-1

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini, S. and McCourt, P., Cross-talk in plant hormone signalling: What Arabidopsis mutants are telling us, Ann. Bot., 2003, vol. 91, no. 6, pp. 605–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni, J.J., Fruit ripening mutants yield insights into ripening control, Curr. Opin. Plant Biol., 2007, vol. 10, no. 3, pp. 283–289. doi 10.1016/j.pbi.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  • Han, L., Li, G.J., Yang, K.Y., Mao, G., Wang, R., Liu, Y., and Zhang, S., Mitogenactivated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis, Plant J., 2010, vol. 64, no. 1, pp. 114–127. doi 10.1111/j.1365-313X.2010.04318.x

    CAS  PubMed  Google Scholar 

  • Hansen, M., Chae, H.S., and Kieber, J.J., Regulation of ACS protein stability by cytokinin and brassinosteroid, Plant J., 2009, vol. 57, no. 4, pp. 606–614. doi 10.1111/j.1365-313X.2008.03711.x

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, Y., Men, S., Fischer, U., Stepanova, A.N., Alonso, J.M., Ljung, K., and Grebe, M., Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis, Nat. Cell Biol., 2009, vol. 11, no. 6, pp. 731–738. doi 10.1038/ncb1879

    Article  CAS  PubMed  Google Scholar 

  • Itkin, M., Seybold, H., Breitel, D., Rogachev, I., Meir, S., and Aharoni, A., TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network, Plant J., 2009, vol. 60, no. 6, pp. 1081–1095. doi 10.1111/j.1365-313X.2009.04064.x

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., Kitagawa, M., Ihashi, N., Yabe, K., Kimbara, J., Yasuda, J., Ito, H., Inakuma, T., Hiroi, S., and Kasumi, T., DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN, Plant J., 2008, vol. 55, no. 2, pp. 212–223. doi 10.1111/j.1365-313X.2008.03491.x

    Article  CAS  PubMed  Google Scholar 

  • Joo, S., Seo, Y.S., Kim, S.M., Hong, D.K., Park, K.Y., and Kim, W.T., Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings, Physiol. Plant., 2006, vol. 126, no. 4, pp. 592–604. doi 10.1111/j.1399-3054.2005.00602.x

    CAS  Google Scholar 

  • Ju, C. and Chang, C., Advances in ethylene signalling: Protein complexes at the endoplasmic reticulum membrane, AoB Plants, 2012. doi 10.1093/aobpla/pls031

    Google Scholar 

  • Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., Cooper, B., Kieber, J.J., and Chang, C., CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 47, pp. 19486–19491. doi 10.1073/pnas.1214848109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlova, R., Chapman, N., David, K., Angenent, G.C., Seymour, G.B., and de Maagd, R.A., Transcriptional control of fleshy fruit development and ripening, J. Exp. Bot., 2014, vol. 65, no. 16, pp. 4527–4541. doi 10.1093/jxb/eru316

    Article  CAS  PubMed  Google Scholar 

  • Kendrick, M.D. and Chang, C., Ethylene signaling: New levels of complexity and regulation, Curr. Opin. Plant Biol., 2008, vol. 11, no. 5, pp. 479–485. doi 10.1016/j.pbi.2008.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevany, B.M., Tieman, D.M., Taylor, M.G., Cin, V.D., and Klee, H.J., Ethylene receptor degradation controls the timing of ripening in tomato fruit, Plant J., 2007, vol. 51, no. 3, pp. 458–467. doi 10.1111/j.1365-313X.2007.03170.x

    Article  CAS  PubMed  Google Scholar 

  • Konishi, M. and Yanagisawa, S., Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3, Plant J., 2008, vol. 55, no. 5, pp. 821–831. doi 10.1111/j.1365-313X.2008.03551.x

    Article  CAS  PubMed  Google Scholar 

  • Kosugi, S. and Ohashi, Y., Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog, Nucleic Acid Res., 2000, vol. 28, no. 4, pp. 960–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryakova, N.V., Burkhanova, E.A., Yakovleva, L.A., Rakitin, V.Yu., Smit, A.R., Kholl, M.A., and Kulaeva, O.N., Ethylene and cytokinins in the regulation of aging of truncated leaves of mutant eti5 Arabidopsis thaliana wild-type source, Fiziol. Rast., 2001, vol. 48, no. 5, pp. 723–727.

    Google Scholar 

  • Lacey, R.F. and Binder, B.M., How plants sense ethylene gas–the ethylene receptors, J. Inorg. Biochem., 2014, vol. 133, pp. 58–62. doi 10.1016/j.jinorgbio

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D.R., Negi, S., Sukumar, P., and Muday, G.K., Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers, Development, 2011, vol. 138, no. 16, pp. 3485–3495. doi 10.1242/dev.065102

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., and Zhang, S., Duallevel regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis, PLoS Genetics, 2012, vol. 8, no. 6. doi 10.1371/journal.pgen.1002767

    Google Scholar 

  • Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., and Guo, H., EIN2-directed translational regulation of ethylene signaling in arabidopsis, Cell, 2015, vol. 163, no. 3, pp. 670–683. doi 10.1016/j.cell.2015.09.037

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q. and Wen, C.K., Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes, Plant Physiol., 2012b, vol. 158, no. 3, pp. 1193–1207. doi 10.1104/pp.111.187757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q. and Wen, C.K., Cooperative ethylene receptor signaling, Plant Signal. Behav., 2012a, vol. 7, no. 8, pp. 1009–1013. doi 10.4161/psb.20937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J., and Solano, R., ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense, Plant Cell, 2003, vol. 15, no. 1, pp. 165–178. doi 10.1105/tpc.007468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwikówa, A., Ciesla, A., Kasprowicz-Maluski, A., Mitula, F., Tajdel, M., Galganski, L., Ziólkowski, P.A., Kubiak, P., Malecka, A., Piechalak, A., Szabat, M., Górska, A., Dábrowski, M., Ibragimow, I., and Sadowski, J., Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis, Mol. Plant, 2014, vol. 7, no. 6, pp. 960–976. doi 10.1093/mp/ssu025

    Article  Google Scholar 

  • Lyzenga, W.J. and Stone, S.L., Regulation of ethylene biosynthesis through protein degradation, Plant Signal. Behav., 2012, vol. 7, no. 11, pp. 1438–1442. doi 10.4161/psb.21930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeon, T. and Yang, S.F., Biosynthesis and metabolism of ethylene, in Plant Hormones and Their Role in Plant Growth and Development, Davides, P.J., Ed., Dordrecht: Martinus Nijhoff Publ., 1987.

  • McManus, M.T., The Plant Hormone Ethylene. Annual Plant Reviews, Oxford: Wiley-Blackwell, 2012, vol. 44.

    Book  Google Scholar 

  • Merchante, C., Alonso, J.M., and Stepanova, A.N., Ethylene signaling: Simple ligand, complex regulation, Curr. Opin. Plant Biol., 2013, vol. 16, no. 5, pp. 554–560. doi 10.1016/j.pbi.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  • Muday, G.K., Rahman, A., and Binder, B.M., Auxin and ethylene: Collaborators or competitors?, Trends Plant Sci., 2012, vol. 17, no. 4, pp. 181–195. doi 10.1016/j.tplants.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  • Murr, D.P. and Yang, S.F., Conversion of 5'-methylthioadenosine to methionine by apple tissue, Phytochemistry, 1975, vol. 14, pp. 1291–1292. doi 10.1016/S0031-9422(00)98613-8

    Article  CAS  Google Scholar 

  • Ohme-Takagi, M. and Shinshi, H., Ethylene-inducible DNA binding proteins that interact with an ethyleneresponsive element, Plant Cell, 1995, vol. 7, no. 2, pp. 173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirrello, J., Prasad, B.C., Zhang, W., Chen, K., Mila, I., Zouine, M., Latché, A., Pech, J.C., Ohme-Takagi, M., Regad, F., and Bouzayen, M., Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene, BMC Plant Biol., 2012, vol. 12, p. 190. doi 10.1186/1471-2229-12-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pre, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C.M., and Memelink, J., The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense, Plant Physiol., 2008, vol. 147, no. 3, pp. 1347–1357. doi 10.1104/pp.108.117523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, H., Shen, Z., Huang, S.C., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R., Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas, Science, 2012, vol. 338, no. 6105, pp. 390–393. doi 10.1126/science.1225974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C.-Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G.-L., Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes, Science, 2000, vol. 290, no. 5499, pp. 2105–2110.

    Article  CAS  PubMed  Google Scholar 

  • Rudus, I., Sasiak, M., and Kepczynski, J., Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane- 1-carboxylate oxidase (ACO) gene, Acta Physiol. Plant., 2013, vol. 35, no. 2, pp. 295–307. doi 10.1007/s11738-012-1096-6

    Article  CAS  Google Scholar 

  • Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., and Benkova, E., Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution, Plant Cell, 2007, vol. 19, no. 7, pp. 2197–2212. doi 10.1105/tpc.107.052126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzewuski, G. and Suter, M., Ethylene biosynthesis and signaling in rice, Plant Sci., 2008, vol. 175, pp. 32–42. doi 10.1016/j.plantsci.2008.01.012

    Article  CAS  Google Scholar 

  • Shakeel, S., Gao, Z., Amir, M., Chen, Y.F., Rai, M.I., Haq, N.U., and Schaller, G.E., Ethylene regulates levels of ethylene-receptor/CTR1 signaling complexes in Arabidopsis thaliana, J. Biol. Chem., 2015, vol. 290, no. 19, pp. 12415–12424. doi 10.1074/jbc.M115.652503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, K., Lee, S., Song, W.Y., Lee, R.A., Lee, I., Ha, K., Koo, J.C., Park, S.K., Nam, H.G., Lee, Y., and Soh, M.S., Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana, Plant Cell Physiol., 2015, vol. 56, no. 3, pp. 572–582. doi 10.1093/pcp/pcu201

    Article  CAS  PubMed  Google Scholar 

  • Skottke, K.R., Yoon, G.M., Kieber, J.J., and DeLong, A., Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms, PLoS Genet., 2011, vol. 7, no. 4. doi 10.1371/journal.pgen.1001370

    Google Scholar 

  • Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R., Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1, Genes Dev., 1998, vol. 12, no. 23, pp. 3703–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova, A.N. and Alonso, J.M., Ethylene signaling and response: Where different regulatory modules meet, Curr. Opin. Plant Biol., 2009, vol. 12, no. 5, pp. 548–555.

    Article  CAS  PubMed  Google Scholar 

  • Stepanova, A.N., Hoyt, J.M., Hamilton, A.A., and Alonso, J.M., A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis, Plant Cell, 2005, vol. 17, no. 8, pp. 2230–2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova, A.N., Yun, J., Likhacheva, A.V., and Alonso, J.M., Multilevel interactions between ethylene and auxin in Arabidopsis roots, Plant Cell, 2007, vol. 19, no. 7, pp. 2169–2185. doi 10.1105/tpc.107.052068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T.S., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M.J., Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation, Plant Cell, 2007, vol. 19, no. 7, pp. 2186–2196. doi 10.1105/tpc.107.052100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka, H. and Umeda, M., Hormonal control of cell division and elongation along differentiation trajectories in roots, J. Exp. Bot., 2014, vol. 65, no. 10, pp. 2633–2643. doi 10.1093/jxb/ert485

    Article  CAS  PubMed  Google Scholar 

  • Tsuchisaka, A. and Theologis, A., Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane- 1-carboxylate synthase gene family members, Plant Physiol., 2004, vol. 136, no. 2, pp. 2982–3000. doi 10.1104/pp.104.049999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka, A., Yu, G., Jin, H., Alonso, J.M., Ecker, J.R., Zhang, X., Gao, S., and Theologis, A., A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana, Genetics, 2009, vol. 183, no. 3, pp. 979–1003. doi 10.1534/genetics.109.107102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Poel, B. and Van Der Straeten, D., 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene!, Front. Plant Sci., 2014, vol. 5, p. 640. doi 10.3389/fpls.2014.00640

  • Van de Poel, B., Bulens, I., Hertog, M.L., Nicolai, B.M., and Geeraerd, A.H., A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: Development, validation and exploration of novel regulatory mechanisms, New Phytol., 2014, vol. 202, no. 3, pp. 952–963. doi 10.1111/nph.12685

    Article  PubMed  Google Scholar 

  • Van de Poel, B., Bulens, I., Markoula, A., Hertog, M.L.A.T.M., Dreesen, R., Wirtz, M., Vandoninck, S., Oppermann, Y., Keulemans, J., Hell, R., Waelkens, E., De Proft, M.P., Sauter, M., Nicolai, B.M., and Geeraerd, A.H., Targeted systems biology profiling of tomato fruit reveals coordination of the Yang Cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening, Plant Physiol., 2012, vol. 160, no. 3, pp. 1498–1514. doi 10.1104/pp.112.206086

    Article  PubMed  PubMed Central  Google Scholar 

  • Voß, U., Bishopp, A., Farcot, E., and Bennett, M.J., Modelling hormonal response and development, Trends Plant Sci., 2014, vol. 19, no. 5, pp. 311–319. doi 10.1016/j.tplants.2014.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel, J.P., Woeste, K.E., Theologis, A., and Kieber, J.J., Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 8, pp. 4766–4771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W., and Giovannoni, J., A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus, Science, 2002, vol. 296, pp. 343–346. doi 10.1126/science.1068181

    Article  CAS  PubMed  Google Scholar 

  • Wang, K.L.-C., Yoshida, H., Lurin, C., and Ecker, J.R., Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein, Nature, 2004, vol. 428, no. 6986, pp. 945–950.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, L., Xiao, D., Xu, X., Guo, Z., and Wang, N.N., The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis, J. Exp. Bot., 2014, vol. 65, no. 15, pp. 4397–4408. doi 10.1093/jxb/eru211

    Article  CAS  PubMed  Google Scholar 

  • Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A., Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family, J. Biol. Chem., 2003, vol. 278, no. 49, pp. 49102–49112.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.F. and Hoffman, N.E., Ethylene biosynthesis and its regulation in higher-plants, Annu. Rev. Plant Physiol. Mol. Biol., 1984, vol. 35, pp. 155–189. doi 10.1146/annurev.pp.35.060184.001103

    Article  CAS  Google Scholar 

  • Zarei, A., Korbes, A.P., Younessi, P., Montiel, G., Champion, A., and Memelink, J., Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis, Plant. Mol. Biol., 2011, vol. 75, nos. 4–5, pp. 321–331. doi 10.1007/s11103-010-9728-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Yu, J., and Wen, C.K., An alternate route of ethylene receptor signaling, Front. Plant Sci., 2014a, vol. 5, p. 648. doi 10.3389/fpls.2014.00648

    PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., Yi, C., and Guo, H., Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylenepromoted apical hook formation in Arabidopsis, Plant Cell, 2014b, vol. 26, no. 3, pp. 1105–1117. doi 10.1105/tpc.113.122002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Q. and Guo, H.W., Paradigms and paradox in the ethylene signaling pathway and interaction network, Mol. Plant, 2011, vol. 4, no. 4, pp. 626–634. doi 10.1093/mp/ssr042

    Article  CAS  PubMed  Google Scholar 

  • Zhao, R., Xie, H., Lv, S., Zheng, Y., Yu, M., Shen, L., and Sheng, J., LeMAPK4 participated in cold-induced ethylene production in tomato fruit, J. Sci. Food Agric., 2013, vol. 93, no. 5, pp. 1003–1009. doi 10.1002/jsfa.5790

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., Mu, A., Jiang, Z., Kim, J.M., To, T.K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.Q., Seki, M., Zhou, J.M., and Guo, H., Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 30, pp. 12539–12544. doi 10.1073/pnas.1103959108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z. and Lee, B., Friends or foes: New insights in jasmonate and ethylene co-actions, Plant Cell Physiol., 2015, vol. 56, no. 3, pp. 414–420.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zemlyanskaya.

Additional information

Original Russian Text © E.V. Zemlyanskaya, N.A. Omelyanchuk, A.A. Ermakov, V.V. Mironova, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 3, pp. 386–395.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemlyanskaya, E.V., Omelyanchuk, N.A., Ermakov, A.A. et al. Mechanisms regulating ethylene signal transduction in plants. Russ J Genet Appl Res 7, 335–344 (2017). https://doi.org/10.1134/S2079059717030169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717030169

Keywords

Navigation