Skip to main content
Log in

Association of the EPAS1 gene G/A polymorphism with successful performance in a group of Russian wrestlers

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

A large number of studies have shown that the EPAS1 gene may serve as a possible predictor of success in sports because of its influence on the processes of oxygen transportation and consumption. However, the data concerning the impact of EPAS1 polymorphisms on sports achievements in the contemporary research literature are very scarce and contradictory. The aim of the present paper is to study the genetic selection for the polymorphic system of the EPAS1 (rs1867785) gene in a group of male sambo practitioners. The study is carried out on 312 Russian males from 18 to 30 years of age, including 220 professional athletes and 92 non-athletes, who served as the control group. The genotype for a single-nucleotide G/A polymorphism of the EPAS1 gene is determined for each participant of the study. Analysis of the EPAS1 genotype frequencies revealed statistically significant differences between the two groups. The group of professional athletes exhibited an increase of the АА and AG genotype frequencies (χ2 = 8.68, p = 0.01). Thus, sambo wrestlers of high professional levels are characterized by having the minor А-allele of the EPAS1 gene in their genotypes. The odd ratio (OR) calculated for this group is 1.800 (95% CI 1.227–2.641), demonstrating that the carriers of the А-allele of the EPAS1 gene have some advantage over the carriers of the G-allele. OR for the highest ranked wrestlers is even higher, 1.990 (95% CI 1.195–3.313). These results suggest directed genetic selection in the А-allele carriers of the EPAS1 gene among sambo wrestlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beall, C.M., Cavalleri, G.L., Deng, L., Elston, R.C., Gao, Y., Knight, J., Li, C., Li, J.C., Liang, Y., McCormack, M., Montgomery, H.E., Pan, H., Robbins, P.A., Shianna, K.V., Tam, S.C., Tsering, N., Veeramah, K.R., Wang, W., et al., Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 25, pp. 11459–11464. doi 10.1073/pnas.1002443107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billaut, F., Gore, C.J., and Aughey, R.J., Enhancing teamsport athlete performance: Is altitude training relevant?, Sports Med., 2012, vol. 42, pp. 751–767. doi 10.2165/11634050-000000000-00000

    Article  PubMed  Google Scholar 

  • Bouchard, C., Rankinen, T., Chagnon, Y.C., Rice, T., Perusse, L., Gagnon, J., Borecki, I., An, P., Leon, A.S., Skinner, J.S., Wilmore, J.H., Province, M., and Rao, D.C., Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study, J. Appl. Physiol., 2000, vol. 88, pp. 551–559.

    CAS  PubMed  Google Scholar 

  • Ema, M., Taya, S., Yokotani, N., Sogawa, K., Matsuda, Y., and Fujii-Kuriyama, Y., A novel bHLH-PAS factor with close sequence similarity to hypoxia inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eynon, N., Hanson, E.D., Lucia, A., Houweling, P.J., Garton, F., North, K.N., and Bishop, D.J., Genes for elite power and sprint performance: ACTN3 leads the way, Sports Med., 2013, vol. 43, pp. 803–817. doi 10.1007/s40279-013-0059-4

    Article  PubMed  Google Scholar 

  • Formenti, F., Constantin-Teodosiu, D., Emmanuel, Y., Cheeseman, J., Dorrington, K.L., Edwards, L.M., Humphreys, S.M., Lappin, T.R., McMullin, M.F., McNamara, C.J., Mills, W., Murphy, J.A., O’Connor, D.F., Percy, M.J., Ratcliffe, P.J., et al., Regulation of human metabolism by hypoxia-inducible factor, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 28, pp. 12722–12727. doi 10.1073/pnas.1002339107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, R.L., Simonson, T.S., Cooksey, R.C., Tanna, U., Qin, G., Huff, C.D., Witherspoon, D.J., Xing, J., Zhengzhong, B., Prchal, J.T., Jorde, L.B., and McClain, D.A., Metabolic insight into mechanisms of high-altitude adaptation in Tibetans, Mol. Genet. Metab., 2012, vol. 106, no. 2, pp. 244–247. doi 10.1016/j.ymgme.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccia, A.J., Simon, M.C., and Johnson, R., The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease, Genes Dev., 2004, vol. 18, pp. 2183–2194.

    CAS  Google Scholar 

  • Henderson, J., Withford-Cave, J.M., Duffy, D.L., Cole, S.J., Sawyer, N.A., Gulbin, J.P., Hahn, A., Trent, R.J., and Yu, B., The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes, Hum. Genet., 2005, vol. 118, pp. 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, K.R., Williamson, D.L., Fealy, C.E., Kriz, D.A., Krishnan, R.K., Huang, H., Ahn, J., Loomis, J.L., and Kirwan, J.P., Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans, Metabolism, 2010, vol. 59, no. 2, pp. 200–205. doi 10.1016/j.metabol.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 2006, vol. 3, no. 3, pp. 177–185.

    Article  PubMed  Google Scholar 

  • Loboda, A., Jozkowicz, A., and Dulak, J., HIF-1 versus HIF-2–is one more important than the other?, Vascul. Pharmacol., 2012, vol. 56, pp. 245–251. doi 10.1016/j.vph.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  • Majmundar, A.J., Wong, W.J., and Simon, M.C., Hypoxia-inducible factors and the response to hypoxic stress, Mol. Cell, 2010, vol. 40, pp. 294–309. doi 10.1016/j.molcel.2010.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metab., 2006, vol. 3, no. 3, pp. 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Scortegagna, M., Morris, M.A., Oktay, Y., Bennett, M., and Garcia, J.A., The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice, Blood, 2003, vol. 102, pp. 1634–1640.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, N., Maemura, K., Imai, Y., Harada, T., Kawanami, D., Nojiri, T., Manabe, I., and Nagai, R., Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1, Circ. Res., 2004, vol. 95, pp. 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Tian, H., McKnight, S.L., and Russell, D.W., Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells, Genes Dev., 1997, vol. 11, pp. 72–82.

    CAS  PubMed  Google Scholar 

  • Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W., and McKnight, S.L., The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development, Genes Dev., 1998, vol. 12, pp. 3320–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voisin, S., Cieszczyk, P., Pushkarev, V.P., Dyatlov, D.A., Vashlyayev, B.F., Shumaylov, V.A., Maciejewska-Karlowska, A., Sawczuk, M., Skuza, L., Jastrzebski, Z., Bishop, D.J., and Eynon, N., EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes, BMC Genomics, 2014, vol. 18, no. 15, p. 382. doi 10.1186/1471-2164-15-382

    Article  Google Scholar 

  • Wada, T., Transcription factor EPAS1 regulates insulin signaling pathway, Yakugaku Zasshi, 2007, vol. 127, no. 1, pp. 143–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bondareva.

Additional information

Original Russian Text © E.A. Bondareva, E.Z. Godina, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 1, pp. 23–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondareva, E.A., Godina, E.Z. Association of the EPAS1 gene G/A polymorphism with successful performance in a group of Russian wrestlers. Russ J Genet Appl Res 6, 793–797 (2016). https://doi.org/10.1134/S2079059716080049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059716080049

Keywords

Navigation