Skip to main content
Log in

Enhancing Team-Sport Athlete Performance

Is Altitude Training Relevant?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60–120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, ‘altitude’ training (i.e. living and/or training in O2-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrow D, Pyne DB, Gabbett T. Skill and physiological demands of open and closed training drills in Australian football. In J Sports Sci Coach 2008; 3 (4): 489–99

    Article  Google Scholar 

  2. Young W, Russell A, Burge P, et al. The use of sprint tests for assessment of speed qualities of elite Australian rules footballers. Int J Sports Physiol Perform 2008; 3 (2): 199–206

    PubMed  Google Scholar 

  3. Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform 2006; 1 (2): 74–83

    PubMed  Google Scholar 

  4. Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform 2011; 6 (3): 295–310

    PubMed  Google Scholar 

  5. Osgnach C, Poser S, Bernardini R, et al. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports and exercise 2010; 42 (1): 170–8

    Article  Google Scholar 

  6. McGuigan MR, Cormack S, Newton RU. Long-term power performance of elite Australian rules football players. J Strength Cond Res 2009; 23 (1): 26–32

    Article  PubMed  Google Scholar 

  7. Portal S, Zadik Z, Rabinowitz J, et al. The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebocontrolled study. Eur J Appl Physiol 2011; 111 (9): 2261–9

    Article  PubMed  CAS  Google Scholar 

  8. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability. Part I: factors contributing to fatigue. Sports Med 2011; 41 (8): 673–94

    Google Scholar 

  9. Spencer M, Bishop D, Dawson B, et al. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med 2005; 35 (12): 1025–44

    Article  PubMed  Google Scholar 

  10. Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med 2011; 32: 1–10

    Article  Google Scholar 

  11. Rampinini E, Coutts AJ, Castagna C, et al. Variation in top level soccer match performance. Int J Sports Med 2007; 28 (12): 1018–24

    Article  PubMed  CAS  Google Scholar 

  12. Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability. Part II: recommendations for training. Sports Med 2011; 41 (9): 741–56

    Article  PubMed  Google Scholar 

  13. Buchheit M. Should we be recommending repeated sprints to improve repeated-sprint performance? Sports Med 2012; 42 (2): 169–72

    Article  PubMed  Google Scholar 

  14. Buchheit M, Mendez-Villanueva A, Quod M, et al. Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed versus sprint interval training. Int J Sports Physiol Perform 2010; 5 (2): 152–64

    PubMed  Google Scholar 

  15. Serpiello FR, McKenna MJ, Stepto NK, et al. Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 2011; 111 (4) 669–78

    Article  PubMed  Google Scholar 

  16. Dawson B, Hopkinson R, Appleby B, et al. Comparison of training activities and game demands in the Australian Football League. J Sci Med Sport 2004; 7 (3): 292–301

    Article  PubMed  CAS  Google Scholar 

  17. Ferrari Bravo D, Impellizzeri FM, Rampinini E, et al. Sprint vs. interval training in football. Int J Sports Med 2008; 29 (8): 668–74

    Article  CAS  Google Scholar 

  18. Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol 2011; 111: 293–301

    Article  PubMed  Google Scholar 

  19. Impellizzeri FM, Marcora SM, Castagna C, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med 2006; 27 (6): 483–92

    Article  PubMed  CAS  Google Scholar 

  20. Bartsch P, Saltin B, Dvorak J. Consensus statement on playing football at different altitude. Scand J Med Sci Sports 2008; 18 Suppl. 1: 96–9

    Article  PubMed  Google Scholar 

  21. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 2009; 39 (2): 107–27

    Article  PubMed  Google Scholar 

  22. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med 2010; 40 (1): 1–25

    Article  PubMed  Google Scholar 

  23. Hamlin MJ, Marshall HC, Hellemans J, et al. Effect of intermittent hypoxic training on 20 km time trial and 30s anaerobic performance. Scand J Med Sci Sports 2010; 20 (4): 651–61

    Article  PubMed  CAS  Google Scholar 

  24. Wood MR, Dowson MN, Hopkins WG. Running performance after adaptation to accutely intermittent hypoxia. Eur J Sport Sci 2006; 6 (3): 163–72

    Article  Google Scholar 

  25. Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners. III: muscular adjustments of selected gene transcripts. J Appl Physiol 2006; 100 (4): 1258–66

    CAS  Google Scholar 

  26. Gore CJ, McSharry PE, Hewitt AJ, et al. Preparation for football competition at moderate to high altitude. Scand J Med Sci Sports 2008; 18 Suppl. 1: 85–95

    Article  PubMed  Google Scholar 

  27. Levine BD, Stray-Gundersen J, Mehta RD. Effect of altitude on football performance. Scand J Med Sci Sports 2008; 18 Suppl. 1: 76–84

    Article  PubMed  Google Scholar 

  28. Gore CJ, Little SC, Hahn AG, et al. Reduced performance of male and female athletes at 580 m altitude. Eur J Appl Physiol Occup Physiol 1997; 75 (2): 136–43

    Article  PubMed  CAS  Google Scholar 

  29. Wehrlin JP, Hallen J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 2006; 96 (4): 404–12

    Article  PubMed  Google Scholar 

  30. Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc 2007; 39 (9): 1600–9

    Article  PubMed  Google Scholar 

  31. Vogt M, Hoppeler H. Is hypoxia training good for muscles and exercise performance? Prog Cardiovasc Dis 2010; 52 (6): 525–33

    Article  PubMed  Google Scholar 

  32. Wilber RL. Current trends in altitude training. Sports Med 2001; 31 (4): 249–65

    Article  PubMed  CAS  Google Scholar 

  33. Billaut F. A higher calling, but does altitude training work? The conversation. Melbourne (VIC): The Conversation Media Trust, 2011

    Google Scholar 

  34. Billaut F, Bishop D. Muscle fatigue in males and females during multiple-sprint exercise. Sports Med 2009; 39 (4): 257–78

    Article  PubMed  Google Scholar 

  35. Deutsch MU, Kearney GA, Rehrer NJ. Time-motion analysis of professional rugby union players during match-play. J Sports Sci 2007; 25 (4): 461–72

    Article  PubMed  CAS  Google Scholar 

  36. Aughey RJ. Australian football player work rate: evidence of fatigue and pacing? Int J Sports Physiol Perform 2010; 5 (3): 394–405

    PubMed  Google Scholar 

  37. Bangsbo J, Norregaard L, Thorso F. Activity profile of competition soccer. Can J Sport Sci 1991; 16 (2): 110–6

    PubMed  CAS  Google Scholar 

  38. Dawson B, Hopkinson R, Appleby B, et al. Player movement patterns and game activities in the Australian Football League. J Sci Med Sport 2004; 7 (3): 278–91

    Article  PubMed  CAS  Google Scholar 

  39. Rampinini E, Impellizzeri FM, Castagna C, et al. Technical performance during soccer matches of the Italian Series A league: effect of fatigue and competitive level. J Sci Med Sport 2009; 12 (1): 227–33

    Article  PubMed  Google Scholar 

  40. Spencer M, Lawrence S, Rechichi C, et al. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci 2004; 22: 843–50

    Article  PubMed  Google Scholar 

  41. Bangsbo J. The physiology of soccer: with special reference to intense intermittent exercise. Acta Physiol Scand Suppl 1994; 619: 1–155

    PubMed  CAS  Google Scholar 

  42. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 2006; 24 (7): 665–74

    Article  PubMed  Google Scholar 

  43. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 2003; 21 (7): 519–28

    Article  PubMed  Google Scholar 

  44. Aughey RJ. Increased high intensity activity in elite Australian football finals matches. Int J Sport Physiol Perform 2011; 6 (3): 367–79

    Google Scholar 

  45. Deutsch MU, Maw GJ, Jenkins D, et al. Heart rate, blood lactate and kinematic data of elite colts (under-19) rugby union players during competition. J Sports Sci 1998; 16 (6): 561–70

    Article  PubMed  CAS  Google Scholar 

  46. Bradley PS, Sheldon W, Wooster B, et al. High-intensity running in English FA Premier League soccer matches. J Sports Sci 2009; 27 (2): 159–68

    Article  PubMed  Google Scholar 

  47. Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 2006; 38 (6): 1165–74

    Article  PubMed  CAS  Google Scholar 

  48. Randers MB, Mujika I, Hewitt A, et al. Application of four different football match analysis systems: a comparative study. J Sports Sci 2010; 28 (2): 171–82

    Article  PubMed  Google Scholar 

  49. Rampinini E, Bosio A, Ferraresi I, et al. Match-related fatigue in soccer players. Med Sci Sports Exerc 2011; 43 (11): 2161–70

    Article  PubMed  Google Scholar 

  50. Varley MC, Aughey RJ. One minute rolling sampling periods: the most sensitive method for identifying transient fatigue in soccer [abstract]. Asics Conference of Science and Medicine in Sport (ACSMS); 2010 Nov 4–6; Port Douglas (QLD). Sports Med Australia 2010; e53

    Google Scholar 

  51. Balsom PD, Gaitanos GC, Ekblom B, et al. Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol Scand 1994; 152 (3): 279–85

    Article  PubMed  CAS  Google Scholar 

  52. Billaut F, Smith KJ. Prolonged repeated-sprint ability is related to arterial O2 desaturation in man. Int J Sports Physiol Perform 2010; 5: 197–209

    PubMed  Google Scholar 

  53. Smith KJ, Billaut F. Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 2010; 109: 989–99

    Article  PubMed  Google Scholar 

  54. Billaut F, Buchheit M. Hypoxia lowers muscle reoxygenation during repeated sprints [abstract]. Med Sci Sports Exerc 2011; 43 (5 Suppl.): 152

    Google Scholar 

  55. Hamlin MJ, Hinckson EA, Wood MR, et al. Simulated rugby performance at 1550-m altitude following adaptation to intermittent normobaric hypoxia. J Sci Med Sport 2008; 11 (6): 593–9

    Article  PubMed  Google Scholar 

  56. Weston AR, Mackenzie G, Tufts MA, et al. Optimal time of arrival for performance at moderate altitude (1700m). Med Sci Sports Exerc 2001; 33 (2): 298–302

    PubMed  CAS  Google Scholar 

  57. Glaister M. Multiple-sprint work: methodological, physiological, and experimental issues. Int J Sports Physiol Perform 2008; 3 (1): 107–12

    PubMed  Google Scholar 

  58. Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol 2010; 110 (5): 1007–18

    Article  PubMed  Google Scholar 

  59. Jougla A, Micallef JP, Mottet D. Effects of active vs. passive recovery on repeated rugby-specific exercises. J Sci Med Sport 2010; 13 (3): 350–5

    CAS  Google Scholar 

  60. Meckel Y, Gottlieb R, Eliakim A. Repeated sprint tests in young basketball players at different game stages. Eur J Appl Physiol 2009; 107 (3): 273–9

    Article  PubMed  Google Scholar 

  61. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80 (3): 876–84

    PubMed  CAS  Google Scholar 

  62. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30s of maximal sprint cycling in man. J Physiol 1995; 482 (Pt 2): 467–80

    PubMed  CAS  Google Scholar 

  63. Dawson B, Goodman C, Lawrence S, et al. Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand J Med Sci Sports 1997; 7: 206–13

    Article  PubMed  CAS  Google Scholar 

  64. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75 (2): 712–9

    PubMed  CAS  Google Scholar 

  65. Harris R, Edwards R, Hultman E, et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflügers Arch 1976; 367: 137–42

    Article  PubMed  CAS  Google Scholar 

  66. Sahlin K, Harris R, Hultman E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 1979; 39: 551–8

    Article  PubMed  CAS  Google Scholar 

  67. McCully KK, Iotti S, Kendrick K, et al. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 1994; 77 (1): 5–10

    PubMed  CAS  Google Scholar 

  68. Buchheit M. Fatigue during Repeated sprints: precision needed. Sports Med 2012; 42 (2): 165–7

    Article  PubMed  Google Scholar 

  69. Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36 (5): 807–13

    PubMed  CAS  Google Scholar 

  70. Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol 2006; 96 (1): 97–105

    Article  PubMed  CAS  Google Scholar 

  71. Overgaard K, Hojfeldt GW, Nielsen OB. Effects of acidification and increased extracellular potassium on dynamic muscle contractions in isolated rat muscles. J Physiol (Lond) 2010; 588 (Pt 24): 5065–76

    Article  CAS  Google Scholar 

  72. Pedersen TH, Nielsen OB, Lamb GD, et al. Intracellular acidosis enhances the excitability of working muscle. Science 2004; 305 (5687): 1144–7

    Article  PubMed  CAS  Google Scholar 

  73. Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol 2005; 95 (1): 27–34

    Article  PubMed  CAS  Google Scholar 

  74. McGawley K, Bishop D. Anaerobic and aerobic contribution to two, 5 × 6-s repeated-sprint bouts [abstract]. Proceedings of the Verona-Ghirada Team-Sport Conference; 2008 Jun 7–8; Treviso. Sundsvall: Coach Sport Sci J 2008; 3 (2) 52

    Google Scholar 

  75. Edge J, Bishop D, Goodman C, et al. Effects of high- and moderate-intensity training on metabolism and repeated sprints. Med Sci Sports Exerc 2005; 37 (11): 1975–82

    Article  PubMed  Google Scholar 

  76. McMillan K, Helgerud J, Macdonald R, et al. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med 2005; 39 (5): 273–7

    Article  PubMed  CAS  Google Scholar 

  77. Balsom PD, Ekblom B, Sjodin B. Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta Physiol Scand 1994; 150 (4): 455–6

    Article  PubMed  CAS  Google Scholar 

  78. Bishop D, Edge J. Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur J Appl Physiol 2006; 97 (4): 373–9

    Article  PubMed  Google Scholar 

  79. Hamilton A, Nevill M, Brooks S, et al. Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and game players. J Sports Sci 1991; 9: 371–82

    Article  PubMed  CAS  Google Scholar 

  80. Tomlin DL, Wenger HA. The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise. J Sci Med Sport 2002; 5 (3): 194–203

    Article  PubMed  CAS  Google Scholar 

  81. Smith KJ, Billaut F. Tissue oxygenation in men and women during repeated-sprint exercise. Int J Sports Physiol Perform 2012; 7 (1): 59–67

    PubMed  Google Scholar 

  82. Billaut F. Electromyography assessment of muscle recruitment strategies during high-intensity exercise. In: Mizrahi J, editor. Advances in applied electromyography rijeka. Croatia: In-Tech Open Access Publisher, 2011: 25–40

    Google Scholar 

  83. Powers SK, Martin D, Dodd S. Exercise-induced hypoxaemia in elite endurance athletes: incidence, causes and impact on VO2max. Sports Med 1993; 16 (1): 14–22

    Article  PubMed  CAS  Google Scholar 

  84. Clark SA, Bourdon PC, Schmidt W, et al. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol 2007; 102 (1): 45–55

    Article  PubMed  Google Scholar 

  85. Ekblom B. Applied physiology of soccer. Sports Med 1986; 3 (1): 50–60

    Article  PubMed  CAS  Google Scholar 

  86. Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab 2009; 34 (4): 689–99

    Article  PubMed  Google Scholar 

  87. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 2007; 39 (12): 2219–25

    Article  PubMed  Google Scholar 

  88. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 2008; 103 (4): 411–9

    Article  PubMed  Google Scholar 

  89. Racinais S, Bishop D, Denis R, et al. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 2007; 39 (2): 268–74

    Article  PubMed  Google Scholar 

  90. Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 2009; 10 (2): 149–64

    Article  PubMed  Google Scholar 

  91. Perrey S, Rupp T. Altitude-induced changes in muscle contractile properties. High Alt Med Biol 2009; 10 (2): 175–82

    Article  PubMed  CAS  Google Scholar 

  92. Perrey S, Racinais S, Saimouaa K, et al. Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 2010; 109 (6): 1027–36

    Article  PubMed  Google Scholar 

  93. Nieber K. Hypoxia and neuronal function under in vitro conditions. Pharmacol Ther 1999; 82 (1): 71–86

    Article  PubMed  CAS  Google Scholar 

  94. Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010; 30 (9): 1598–607

    Article  PubMed  CAS  Google Scholar 

  95. Amann M, Eldridge MW, Lovering AT, et al. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 2006; 575 (Pt 3): 937–52

    Article  PubMed  CAS  Google Scholar 

  96. Bigland-Ritchie BR, Dawson NJ, Johansson RS, et al. Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. J Physiol 1986; 379: 451–9

    PubMed  CAS  Google Scholar 

  97. Dillon GH, Waldrop TG. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia. Neuroscience 1992; 51 (4): 941–50

    Article  PubMed  CAS  Google Scholar 

  98. Dousset E, Decherchi P, Grelot L, et al. Comparison between the effects of chronic and acute hypoxemia on muscle afferent activities from the tibialis anterior muscle. Exp Brain Res 2003; 148 (3): 320–7

    PubMed  Google Scholar 

  99. Amann M, Romer LM, Subudhi AW, et al. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 2007; 581 (Pt 1): 389–403

    Article  PubMed  CAS  Google Scholar 

  100. Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 2007; 103 (1): 177–83

    Article  PubMed  CAS  Google Scholar 

  101. Volianitis S, Fabricius-Bjerre A, Overgaard A, et al. The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. J Physiol 2008; 586 (1): 107–12

    Article  PubMed  CAS  Google Scholar 

  102. Hoppeler H, Fluck M. Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol 2002; 205 (Pt 15): 2143–52

    PubMed  Google Scholar 

  103. Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 2008; 18 Suppl. 1: 38–49

    Article  PubMed  Google Scholar 

  104. Hoppeler H, Howald H, Cerretelli P. Human muscle structure after exposure to extreme altitude. Experientia 1990; 46 (11–12): 1185–7

    Article  PubMed  CAS  Google Scholar 

  105. MacDougall JD, Green HJ, Sutton JR, et al. Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand 1991; 142 (3): 421–7

    Article  PubMed  CAS  Google Scholar 

  106. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997; 83 (1): 102–12

    PubMed  CAS  Google Scholar 

  107. Saunders PU, Pyne DB, Gore CJ. Endurance training at altitude. High Alt Med Biol 2009; 10 (2): 135–48

    Article  PubMed  Google Scholar 

  108. Stray-Gundersen J, Levine BD. Live high, train low at natural altitude. Scand J Med Sci Sports 2008; 18 Suppl. 1: 21–8

    Article  PubMed  Google Scholar 

  109. Geiser J, Vogt M, Billeter R, et al. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 2001; 22 (8): 579–85

    Article  PubMed  CAS  Google Scholar 

  110. Julian CG, Gore CJ, Wilber RL, et al. Intermittent nor-mobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 2004; 96 (5): 1800–7

    Article  PubMed  CAS  Google Scholar 

  111. Powell FL, Garcia N. Physiological effects of intermittent hypoxia. High Alt Med Biol 2000; 1 (2): 125–36

    Article  PubMed  CAS  Google Scholar 

  112. Tadibi V, Dehnert C, Menold E, et al. Unchanged anaerobic and aerobic performance after short-term intermittent hypoxia. Med Sci Sports Exerc 2007; 39 (5): 858–64

    Article  PubMed  Google Scholar 

  113. Truijens MJ, Rodriguez FA, Townsend NE, et al. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol 2008; 104 (2): 328–37

    Article  PubMed  Google Scholar 

  114. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 2001; 31 (7): 533–57

    Article  PubMed  CAS  Google Scholar 

  115. Truijens MJ, Toussaint HM, Dow J, et al. Effect of high- intensity hypoxic training on sea-level swimming performances. J Appl Physiol 2003; 94 (2): 733–43

    PubMed  CAS  Google Scholar 

  116. Nummela A, Rusko H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci 2000; 18 (6): 411–9

    Article  PubMed  CAS  Google Scholar 

  117. Roberts AD, Clark SA, Townsend NE, et al. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high: train low altitude exposure. Eur J Appl Physiol 2003; 88 (4–5): 390–5

    Article  PubMed  CAS  Google Scholar 

  118. Juel C, Lundby C, Sander M, et al. Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia. J Physiol 2003; 548 (Pt 2): 639–48

    Article  PubMed  CAS  Google Scholar 

  119. Gore CJ, Hahn AG, Aughey RJ, et al. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 2001; 173 (3): 275–86

    Article  PubMed  CAS  Google Scholar 

  120. Basset FA, Joanisse DR, Boivin F, et al. Effects of short-term normobaric hypoxia on haematology, muscle phenotypes and physical performance in highly trained athletes. Exp Physiol 2006; 91 (2): 391–402

    Article  PubMed  Google Scholar 

  121. Clark SA, Aughey RJ, Gore CJ, et al. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. J Appl Physiol 2004; 96 (2): 517–25

    Article  PubMed  Google Scholar 

  122. Mizuno M, Juel C, Bro-Rasmussen T, et al. Limb skeletal muscle adaptation in athletes after training at altitude. J Appl Physiol 1990; 68 (2): 496–502

    PubMed  CAS  Google Scholar 

  123. Saltin B, Kim CK, Terrados N, et al. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand J Med Sci Sports 1995; 5 (4): 222–30

    Article  PubMed  CAS  Google Scholar 

  124. Mizuno M, Savard GK, Areskog NH, et al. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol 2008; 9 (4): 311–7

    Article  PubMed  CAS  Google Scholar 

  125. Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 2001; 91 (1): 173–82

    PubMed  CAS  Google Scholar 

  126. Melissa L, MacDougall JD, Tarnopolsky MA, et al. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc 1997; 29 (2): 238–43

    Article  PubMed  CAS  Google Scholar 

  127. Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol 2003; 88 (4–5): 396–403

    Article  PubMed  Google Scholar 

  128. Meeuwsen T, Hendriksen IJ, Holewijn M. Training- induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol 2001; 84 (4): 283–90

    Article  PubMed  CAS  Google Scholar 

  129. Morton JP, Cable NT. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics 2005; 48 (11–14): 1535–46

    Article  PubMed  Google Scholar 

  130. Hinckson EA, Hamlin MJ, Wood MR, et al. Game performance and intermittent hypoxic training. Br J Sports Med 2007; 41 (8): 537–9

    Article  PubMed  CAS  Google Scholar 

  131. Hamlin MJ, Hellemans J. Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes. J Sports Sci 2007; 25 (4): 431–41

    Article  PubMed  Google Scholar 

  132. Bonetti DL, Hopkins WG, Kilding AE. High-intensity kayak performance after adaptation to intermittent hypoxia. Int J Sports Physiol Perform 2006; 1 (3): 246–60

    PubMed  Google Scholar 

  133. Bakkman L, Sahlin K, Holmberg HC, et al. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxf) 2007; 190 (3): 243–51

    Article  CAS  Google Scholar 

  134. Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol 1988; 57 (2): 203–9

    Article  PubMed  CAS  Google Scholar 

  135. Terrados N, Jansson E, Sylven C, et al. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 1990; 68 (6): 2369–72

    PubMed  CAS  Google Scholar 

  136. Green H, MacDougall J, Tarnopolsky M, et al. Down-regulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia. J Appl Physiol 1999; 86 (5): 1745–8

    PubMed  CAS  Google Scholar 

  137. Hoppeler H, Vogt M, Weibel ER, et al. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 2003; 88 (1): 109–19

    Article  PubMed  CAS  Google Scholar 

  138. Roels B, Thomas C, Bentley DJ, et al. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol 2007; 102 (1): 79–86

    Article  PubMed  CAS  Google Scholar 

  139. Roels B, Bentley DJ, Coste O, et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 2007; 101 (3): 359–68

    Article  PubMed  Google Scholar 

  140. Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners. I: improvement in aerobic performance capacity. J Appl Physiol 2006; 100 (4): 1238–48

    Article  PubMed  CAS  Google Scholar 

  141. Katayama K, Matsuo H, Ishida K, et al. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt Med Biol 2003; 4 (3): 291–304

    Article  PubMed  Google Scholar 

  142. Green HJ, Roy B, Grant S, et al. Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 2000; 89 (3): 1189–97

    PubMed  CAS  Google Scholar 

  143. Katayama K, Sato K, Matsuo H, et al. Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 2004; 92 (1–2): 75–83

    Article  PubMed  Google Scholar 

  144. Marconi C, Marzorati M, Sciuto D, et al. Economy of locomotion in high-altitude Tibetan migrants exposed to normoxia. J. Physiol. (Lond.) 2005; 569 (Pt 2): 667–75

    Article  CAS  Google Scholar 

  145. Saunders PU, Telford RD, Pyne DB, et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 2004; 96 (3): 931–7

    Article  PubMed  CAS  Google Scholar 

  146. Saunders PU, Telford RD, Pyne DB, et al. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport 2009; 12 (1): 67–72

    Article  PubMed  CAS  Google Scholar 

  147. Schmitt L, Millet G, Robach P, et al. Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol 2006; 97 (5): 627–36

    Article  PubMed  Google Scholar 

  148. Lundby C, Calbet JA, Sander M, et al. Exercise economy does not change after acclimatization to moderate to very high altitude. Scand J Med Sci Sports 2007; 17 (3): 281–91

    PubMed  CAS  Google Scholar 

  149. Siebenmann C, Robach P, Jacobs RA, et al. “Live high-train low” using normobaric hypoxia: a double-blinded, placebocontrolled study. J Appl Physiol 2012; 112 (1): 106–17

    Article  PubMed  Google Scholar 

  150. Schuler B, Thomsen JJ, Gassmann M, et al. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports 2007; 17 (5): 588–94

    Article  PubMed  CAS  Google Scholar 

  151. Garvican L, Martin D, Quod M, et al. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports 2012; 22 (1): 95–103

    Article  PubMed  CAS  Google Scholar 

  152. Clark SA, Quod MJ, Clark MA, et al. Time course of haemoglobin mass during 21 days live high: train low simulated altitude. Eur J Appl Physiol 2009; 106 (3): 399–406

    Article  PubMed  CAS  Google Scholar 

  153. Abellan R, Remacha AF, Ventura R, et al. Hematologic response to four weeks of intermittent hypobaric hypoxia in highly trained athletes. Haematologica 2005; 90 (1): 126–7

    PubMed  Google Scholar 

  154. Ebert TR, Brothers MD, Nelson JL, et al. Effects of moderate altitude training on total hemoglobin mass and hematology in world class sprint cyclists. Med Sci Sports Exerc 2011; 43 (5 Suppl.): 284–5

    Google Scholar 

  155. Desplanches D, Hoppeler H, Linossier MT, et al. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch 1993; 425 (3–4): 263–7

    Article  PubMed  CAS  Google Scholar 

  156. Wagner PD. Counterpoint: in health and in normoxic environment VO2max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 2006; 100 (2): 745–7; discussion 7–8

    Article  PubMed  Google Scholar 

  157. Hamlin MJ, Marshall HC, Hellemans J, et al. Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: a preliminary report. Appl Physiol Nutr Metab 2010; 35 (4): 548–59

    Article  PubMed  CAS  Google Scholar 

  158. Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med 2009; 30 (6): 418–25

    Article  PubMed  CAS  Google Scholar 

  159. Faulkner JA, Kollias J, Favour CB, et al. Maximum aerobic capacity and running performance at altitude. J Appl Physiol 1968; 24 (5): 685–91

    PubMed  CAS  Google Scholar 

  160. Bartsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 2008; 18 Suppl. 1: 1–10

    Article  PubMed  Google Scholar 

  161. Pyne DB, Mujika I, Reilly T. Peaking for optimal performance: research limitations and future directions. J Sports Sci 2009; 27 (3): 195–202

    Article  PubMed  Google Scholar 

  162. Burtscher M, Gatterer H, Faulhaber M, et al. Effects of intermittent hypoxia on running economy. Int J Sports Med 2010; 31 (9): 644–50

    Article  PubMed  CAS  Google Scholar 

  163. Cormack SJ, Newton RU, McGuigan MR, et al. Neuromuscular and endocrine responses of elite players during an Australian rules football season. Int J Sports Physiol Perform 2008; 3 (4): 439–53

    PubMed  Google Scholar 

  164. Mendez-Villanueva A, Buchheit M. Physical capacity-match physical performance relationships in soccer: simply, more complex. Eur J Appl Physiol 2011; 111 (9): 2387–9

    Article  PubMed  Google Scholar 

  165. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol 1998; 85 (4): 1448–56

    PubMed  CAS  Google Scholar 

  166. Robertson EY, Saunders PU, Pyne DB, et al. Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur J Appl Physiol 2010; 110 (2): 379–87

    Article  PubMed  Google Scholar 

  167. Julian CG, Subudhi AW, Wilson MJ, et al. Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. J Appl Physiol 2011; 111 (2): 392–9

    Article  PubMed  CAS  Google Scholar 

  168. Subudhi AW, Dimmen AC, Julian CG, et al. Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia. J Appl Physiol 2011; 110 (5): 1219–25

    Article  PubMed  CAS  Google Scholar 

  169. Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Match running performance and fitness in youth soccer. Int J Sports Med 2010; 31 (11): 818–25

    Article  PubMed  CAS  Google Scholar 

  170. Lago C. The influence of match location, quality of opposition, and match status on possession strategies in professional association football. J Sports Sci 2009; 27 (13): 1463–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Billaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billaut, F., Gore, C.J. & Aughey, R.J. Enhancing Team-Sport Athlete Performance. Sports Med 42, 751–767 (2012). https://doi.org/10.1007/BF03262293

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262293

Keywords

Navigation