Skip to main content
Log in

Coevolution in a predator-prey system: An ecogenetic model

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

In most natural populations, intraspecies competition for natural resources is supplemented by a predator impact. The mode and intensity of the interaction between a prey and its predator may affect the course of competitive or sympatric speciation among the prey and processes of coevolution or cospeciation. Mathematical methods allow the development of models precisely describing all sides of intra- and interspecies interactions. In this paper, we use mathematical modeling to investigate the effect of the intensity of interspecies interactions on competitive or sympatric speciation inside a prey population. The intensity of the interaction is the average number of prey which predators eat pera unit of time: the higher the average number of prey eaten by predators, the greater the intensity of the interaction. In mathematical models, the intensity of such interaction is determined by many parameters. Changes in these parameters will affect the intensity of the interaction. It was found that a sufficiently high intensity of interaction slows competitive speciation among the prey. By altering their adaptive traits, the preys in this case seek to avoid the impact of predators. Another important result was that speciation of predators follows prey speciation when the probability of mutational changes in the adaptive traits of predators exceeds that in the prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P.A., The evolution of predator-prey interactions: theory and evidence, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 79–105.

    Article  Google Scholar 

  • Barker, S.C., Whiting, M., Johnson, K.P., and Murrell, A., Phylogeny of the lice (Insecta, Phthiraptera) inferred from small subunit rRNA, Zool. Scripta, 2003, vol. 32, no. 5, pp. 407–414.

    Article  Google Scholar 

  • Bukin, Ju.S., Pudovkina, T.A., Sherbakov, D.Ju., and Sitnikova, T.Ya., Genetic flows in a structured one-dimensional population: simulation and real data on Baikalian polychaetes M. godlewskii, In silico Biol., 2007, vol. 7, no. 3, pp. 277–284.

    CAS  PubMed  Google Scholar 

  • Dieckmann, U. and Law, R., The dynamical theory of coevolution: a derivation from stochastic ecological processes, Math. Biol., 1996, vol. 34, pp. 579–612.

    Article  CAS  Google Scholar 

  • Dieckmann, U. and Doebeli, M., On the origin of species by sympatric speciation, Nature, 1999, vol. 400, pp. 354–357.

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann, U., Doebeli, M., Johan, A., Metz, J., and Tautz, D., Adaptive Speciation, Cambridge: Univ. Press, 2004.

    Book  Google Scholar 

  • Doebeli, M. and Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am. Natur., 2000, vol. 156, pp. 77–101.

    Article  Google Scholar 

  • Emerson, B.C. and Kolm, N., Species diversity can drive speciation, Nature, 2005, vol. 434, pp. 1015–1017.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, A.A., Powell, T.H.Q., Stelinski, L.L., Smith, J.J., and Feder, L.J., Sequential sympatric speciation across trophic levels, Science, 2009, vol. 323, no. 5915, pp. 776–779.

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg, E.Kh., Opisanie nasledovaniya kolichestvennykh priznakov (Description of Inheritance of Quantitative Traits), Novosibirsk: Nauka, 1984.

    Google Scholar 

  • Kolmogorov, A.N., A qualitative study of mathematical models of populations, in Problemy kibernetiki (Problems of Cybernetics), Moscow: Nauka, 1972, vol. 25, pp. 100–106.

    Google Scholar 

  • Macdonald, K.S., Yampolsky, L., and Emmett Duffy, J., Molecular and morphological evolution of the amphipod radiation of Lake Baikal, Mol. Phylogenet. Evol., 2005, vol. 35, pp. 323–343.

    Article  CAS  PubMed  Google Scholar 

  • Meixner, M.J., Carsten, Luter C., Eckert, C., et al., Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes, Mol. Phylogenet. Evol., 2007, vol. 45, pp. 875–886.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, A., Host-parasite coevolution in a multilocus gene-for-gene system, Proc. Roy. Soc. Biol. Sci. Ser., 2000, vol. 267, pp. 2183–2188.

    Article  CAS  Google Scholar 

  • Semovski, S.V., Bukin, Y.S., and Sherbakov, D.Y., Speciation and neutral molecular evolution in one-dimensional closed population, Int. J. Modern Phys., 2003, vol. 14, pp. 973–983.

    Article  CAS  Google Scholar 

  • Semovskii, S.V., Bukin, Yu.S., and Shcherbakov, D.Yu., Models of sympatric speciation in a changing environment, Sib. Ekol. Zh., 2004, vol. 5, pp. 621–627.

    Google Scholar 

  • Sherbakov, D.Y., Kamaltynov, R.M., Ogarkov, O.B., and Verheyen, E., Patterns of evolutionary change in Baikalian gammarids inferred from DNA sequences (Crustacea, Amphipoda), Mol. Phylogenet. Evol., 1998, vol. 10, pp. 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Simms, E.L., The evolutionary genetics of plant-pathogen systems, BioScience, 1996, vol. 46, pp. 136–143.

    Article  Google Scholar 

  • Smith, V.S., Page, R.D.M., and Johnson, K.P., Data incongruence and the problem of avian louse phylogeny, Zool. Scripta, 2004, vol. 33, no. 3, pp. 239–259.

    Article  Google Scholar 

  • Svirezhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.

    Google Scholar 

  • Takasu, F., Kawasaki, K., Nakamura, H., et al., Modeling the population dynamics of a cuckoo-host association and the evolution of host defenses, Am. Natur., 1993, vol. 142, pp. 819–839.

    Article  CAS  PubMed  Google Scholar 

  • Takasu, F., Modelling the arms race in avian brood parasitism, Evol. Ecol., 1998, vol. 12, pp. 969–987.

    Article  Google Scholar 

  • Takasu, F., Co-evolutionary dynamics of egg appearance in avian brood parasitism, Evol. Ecol. Res., 2003, vol. 5, pp. 345–362.

    Google Scholar 

  • Zaguskin, V.L., Spravochnik po chislennym metodam resheniya uravnenii (Handbook of Numerical Methods for Solving Equations), Moscow: FIZMATGIZ, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Bukin.

Additional information

Original Russian Text © Yu.S. Bukin, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 2, pp. 320–328.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukin, Y.S. Coevolution in a predator-prey system: An ecogenetic model. Russ J Genet Appl Res 4, 543–548 (2014). https://doi.org/10.1134/S2079059714060045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059714060045

Keywords

Navigation