Skip to main content
Log in

Effect of Additives of Carbon Nanotubes and Oxide Nanofibers on the Mechanical Properties of Aluminum AD0 after Thermomechanical Processing

  • GENERAL-PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Aluminum AD0-based cast aluminum composite materials that are reinforced with carbon nanotubes and aluminum oxide nanofibers are obtained. The additives of 0.5 wt % single-walled carbon nanotubes (SWCNTs) and aluminum oxide nanofibers (AONFs) are shown to allow increasing the ultimate strength of cast metal by 15 and 16%, respectively. The hardening of the metal is preserved after cold deformation and annealing. Aluminum AD0 with SWCNTs or AONFs additives does not lose high strength after annealing, while aluminum with no additives is significantly weakened. This allows obtaining annealed aluminum wire with a tensile strength of 54–69% and a yield strength of 53–78% higher than those of metal with no additives. The effect of SWCNTs and AONFs for the grain size of aluminum AD0 in the cast state, after cold deformation, and annealing is studied. Nanoadditives were found to restrain the growth of metal grains at the stage of collective recrystallization and also affect the primary recrystallization of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Choi, H.J., Shin, J.H., and Bae, D.H., Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes, Compos. Sci. Technol., 2011, vol. 71, no. 15, pp. 1699–1705.

    Article  CAS  Google Scholar 

  2. Kwon, H., Park, D.H., Silvain, J.F., and Kawasaki, A., Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol., 2010, vol. 70, no. 3, pp. 546–550.

    Article  CAS  Google Scholar 

  3. Oh, S.-I., Lim, J.-Y., Kim, Y.-C., Yoon, J., Kim, G.-H., Lee, J., Sung, Y.-M., and Han, J.-H., Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process, J. Alloys Compd., 2012, vol. 542, pp. 111–117.

    Article  CAS  Google Scholar 

  4. Mansoor, M. and Shahid, M., Fractographic evaluation of crack initiation and growth in Al-CNTs nanocomposite fabricated by induction melting, Acta Phys. Pol., A, 2015, vol. 128, no. 2-B, pp. B276–B278.

    Article  CAS  Google Scholar 

  5. Yang, X., Shi, C., He, C., Liu, E., Li, J., and Zhao, N., Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites, Composites, Part A, 2010, vol. 42, no. 11, pp. 1833–1839.

    Article  Google Scholar 

  6. Liao, J.-Z., Tan, M.-J., and Sridhar, I., Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites, Mater. Des., 2010, vol. 31, suppl. 1, pp. S96–S100.

    Article  CAS  Google Scholar 

  7. Girisha, L. and George, R., Study on properties of multi walled carbon nanotube reinforced aluminum matrix composite through casting technique, Int. J. Eng. Res. Technol., 2014, vol. 3, no. 4, pp. 1372–1375.

    Google Scholar 

  8. Kwon, H., Park, D.H., Silvain, J.F., and Kawasaki, A., Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol., 2010, vol. 70, no. 3, pp. 546–550.

    Article  CAS  Google Scholar 

  9. Pérez-Bustamante, R., González-Ibarra, M.J., González-Cantú, J., Estrada-Guel, I., Herrera-Ramírez, J.M., Miki-Yoshida, M., and Martínez-Sánchez, R., AA2024–CNTs composites by milling process after T6-temper condition, J. Alloys Compd., 2012, vol. 536, suppl. 1, pp. S17–S20.

    Article  Google Scholar 

  10. Casati, R. and Vedani, M., Metal matrix composites reinforced by nano-particles – a review, Metals, 2014, vol. 4, no. 1, pp. 65–83.

    Article  Google Scholar 

  11. Tahamtan, S., Halvaee, A., Emamy, M., and Zabihi, M.S., Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology, Mater. Des., 2013, vol. 49, pp. 347–359.

    Article  CAS  Google Scholar 

  12. Reeb, A., Walter, V., Schulze, V., and Weidenmann, K.A., Characterization of a hybrid Al2O3–aluminum matrix composite manufactured via composite extrusion, J. Compos. Mater., 2015, vol. 50, no. 8, pp. 1099–1108.

    Article  Google Scholar 

  13. Chen, X.-H. and Yan, H., Fabrication of nanosized Al2O3 reinforced aluminum matrix composites by subtype multifrequency ultrasonic vibration, J. Mater. Res., 2015, vol. 30, no. 14, pp. 2197–2209.

    Article  CAS  Google Scholar 

  14. Ma, P., Jia, Y., Prashanth, K.G., Yu, Z., Yang, S., Zhao, J., and Li, C., Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites, Metals, 2017, vol. 7, no. 9, pp. 359–370. https://doi.org/10.3390/met7090359

    Article  CAS  Google Scholar 

  15. Alekseev, A.V., Dubov, D.Yu., and Predtechenskiy, M.R., Influence of carbon nanotubes on mechanical properties of cast aluminum, grade A5, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 270–278. https://doi.org/10.1134/S2075113318020028

    Article  Google Scholar 

  16. McLean, D., The Mechanical Properties of Metals, New York: Wiley, 1962.

    Google Scholar 

  17. Vakulenko, I.A. and Bolshakovv, V.I., Morfologia struktury i deformatsionnoe uprochnenie stali (Morphology and Deformation Strengthening of Steel), Dnepropetrovsk: Lazarjan Natl. Univ., 2007.

  18. GOST (State Standard) R58019-2017: Rod Aluminium Wire of 8176 and 8030 Alloys. Specifications, 2018.

  19. Beletskii, M.V. and Krivov, G.A., Aluminievye splavy. Sostav, svoistva, tekhnologiya, primenenie. Spravochnik (Aluminum Alloys. Composition, Properties, Technology, Application. Handbook), Kiev: Komintekh, 2005.

  20. Gulyaev, A.P., Metallovedenie (Metal Science), Moscow: Metallurgiya, 1986.

    Google Scholar 

  21. Hatch, J.E., Aluminum: Properties and Physical Metallurgy, Ohio: ASM Int., 1984.

    Google Scholar 

  22. Novikov, I.I., Teoriya termicheskoi obrabotki metallov (Theory of Heat Treatment of Metals), Moscow: Metallurgiya, 1986.

  23. Blanter, M.E., Metallovedenie i termicheskaya obrabotka (Metal Science and Heat Treatment), Moscow: Mashgiz, 1963.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alekseev.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.V., Strekalov, V.V., Khasin, A.A. et al. Effect of Additives of Carbon Nanotubes and Oxide Nanofibers on the Mechanical Properties of Aluminum AD0 after Thermomechanical Processing. Inorg. Mater. Appl. Res. 12, 1302–1309 (2021). https://doi.org/10.1134/S2075113321050026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050026

Keywords:

Navigation