Skip to main content
Log in

Influence of Carbon Nanotubes on Mechanical Properties of Cast Aluminum, Grade A5

  • General Purpose Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Composite materials on the basis of A5 aluminum containing 0.01–0.1 wt % of carbon nanotubes (CNT) were obtained. The composite materials were fabricated by sand casting. Carbon nanotubes were added to the aluminum melt in the form of powdered mixture preliminarily produced using an AGO2S planetary ball mill. It was demonstrated that the CNT additions improved the ultimate tensile strength and yield strength of cast metal by 9 and 32%, respectively. The improvement of metal strength properties even at such a minor amount of nanotubes is determined not only by the inoculating effect but also by dispersion, dislocation, and, to a lesser extent, by reinforcing mechanisms of strengthening. For CNT content in aluminum equal to 0.01 wt %, the calculated yield strength agrees well with experimental values, whereas for CNT content equal to 0.05 and 0.1 wt %, the obtained strengthening is significantly lower than calculations, which can be attributed to agglomeration of nanotubes. The degree of conversion of carbon nanotubes into aluminum carbide as a consequence of interaction with aluminum melt is analyzed. It is demonstrated that less than 50% of carbon nanotubes are transformed into aluminum carbide during melting at 700–800°C. The fact that CNTs are not completely converted into carbide can be attributed to the fact that CNTs are arranged into bundles and only top layer of CNTs is in contact with the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belov, A.N. and Alabin, A.N., Prospective aluminum alloys with advanced heat resistance for armature constructions as an alternative to steels and cast irons, ArmaturoStroenie, 2010, no. 2 (65), pp. 50–54.

    Google Scholar 

  2. Senatorova, O.G., Grushko, O.E., Tkachenko, E.A., Antipov, V.V., Molotova, I.I., Sidel’nikov, V.V., and Legoshina, S.F., New high strength aluminum alloys and materials, Tekhnol. Legk. Splavov, 2007, no. 2, pp. 17–24.

    Google Scholar 

  3. Srinivasa, R.B. and Agarwal, A., An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon, 2011, vol. 49, no. 2, pp. 533–544.

    Article  Google Scholar 

  4. Kashyap, K.T., Koppad, P.G., Puneeth, K.B., Aniruddha Ram, H.R., and Mallikarjuna, H.M., Elastic modulus of multiwalled carbon nanotubes reinforced aluminium matrix nanocomposites—a theoretical approach, Comput. Mater. Sci., 2011, no. 50, pp. 2493–2495.

    Article  CAS  Google Scholar 

  5. George, R., Kashyap, K.T., Rahul, R., and Yamdagnia, S., Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater., 2005, vol. 53, no. 10, pp. 1159–1163.

    Article  CAS  Google Scholar 

  6. Choi, H.J., Shin, J.H., and Bae, D.H., Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes, Compos. Sci. Technol., 2011, vol. 71, no. 15, pp. 1699–1705.

    Article  CAS  Google Scholar 

  7. Kwon, H., Park, D.H., Silvain, J.F., and Kawasaki, A., Investigation of carbon nanotube reinforced aluminum matrix composite materials, Compos. Sci. Technol., 2010, vol. 70, no. 3, pp. 546–550.

    Article  CAS  Google Scholar 

  8. Oh, S.-I., Lim, J.-Y., Kim, Y.-C., Yoon, J., Kim, G.-H., Lee, J., Sung, Y.-M., and Han, J.-H., Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process, J. Alloys Compd., 2012, vol. 542, pp. 111–117.

    Article  CAS  Google Scholar 

  9. Mansoor, M. and Shahid, M., Fractographic evaluation of crack initiation and growth in Al-CNTs nanocomposite fabricated by induction melting, Acta Phys. Pol., A, 2015, vol. 128, no. 2, pp. B276–B278.

    Article  CAS  Google Scholar 

  10. Yang, X., Shi, C., He, C., Liu, E., Li, J., and Zhao, N., Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites, Composites, Part A, 2010, vol. 42, no. 11, pp. 1833–1839.

    Article  Google Scholar 

  11. Liao, J.-Z., Tan, M.-J., and Sridhar, I., Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites, Mater. Des., 2010, vol. 31, suppl, 1, pp. S96–S100.

    Article  CAS  Google Scholar 

  12. Girishal, L. and Raji, G., Study on properties of multi walled carbon nanotube reinforced aluminum matrix composite through casting technique, Int. J. Eng. Res. Technol., 2014, vol. 3, no. 4, pp. 1372–1375.

    Google Scholar 

  13. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., and Lanka, S., The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites, Composites, Part A, 2011, vol. 42, no. 3, pp. 234–243.

    Article  Google Scholar 

  14. Jiang, L., Li, Z., Fan, G., Cao, L., and Zhang, D., CNT/aluminum composites with a homogenous CNT distribution, Carbon, 2012, vol. 50, no. 5, pp. 1993–1998.

    Article  CAS  Google Scholar 

  15. Nam, D.H., Cha, S.I., Lim, B.K., Park, H.M., Han, D.S., and Hong, S.H., CNT/Al–Cu composites, Carbon, 2012, vol. 50, no. 7, pp. 2417–2423.

    Article  CAS  Google Scholar 

  16. Deng, C.F., Wang, D.Z., Zhang, X.X., and Li, A.B., Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng., A, 2007, vol. 444, pp. 138–145.

    Article  Google Scholar 

  17. Abou Bakr Hamed, Khattab, A., Osman, T.A., Azzam, B., and Zaki, M., A novel technique for dispersion of MWCNTs in aluminum alloys, Minia J. Eng. Technol., 2014, vol. 33, no. 1, pp. 229–234.

    Google Scholar 

  18. Rashad, R.M., Awadallah, O.M., and Wifi, A.S., Effect of MWCNTs content on the characteristics of A356 nanocomposite, J. Arch. Mater. Manuf. Eng., 2013, vol. 58, no. 2, pp. 74–80.

    Google Scholar 

  19. Abou Bakr Elshalakany, Osman, T.A., Khattab, A., Azzam, B., and Zaki, M., Microstructure and mechanical properties of MWCNTs reinforced A356 aluminum alloys cast nanocomposites fabricated by using a combination of rheocasting and squeeze casting techniques, Hindawi Publ. Corp. J. Nanomater., 2014, vol. 2014, art. ID 386370, p. 14

    Google Scholar 

  20. Senthamaraia, K. and Marimuthu, P., Experimental investigation on microstructure and mechanical behavior of stir cast metal matrix composite AA6061 with MWCNT, Int. J. Adv. Eng. Technol., 2016, vol. 7, no. 2, pp. 1115–1117.

    Google Scholar 

  21. Yana, H. and Qiu, H., Fabrication of carbon nanotube reinforced A356 nanocomposites, J. Mater. Res., 2016, vol. 31, no. 15, pp. 2277–20283.

    Article  Google Scholar 

  22. Stein, J., Lenczowski, B., Fréty, N., and Anglaret, E., Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes, Carbon, 2012, vol. 50, no. 6, pp. 2264–2272.

    Article  CAS  Google Scholar 

  23. Deng, C., Zhang, X.X., Wang, D., Lin, Q., and Li, A., Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater. Lett., 2007, vol. 61, nos. 8–9, pp. 1725–1728.

    Article  CAS  Google Scholar 

  24. Abbasipour, B., Niroumand, B., and Monir Vagheffi, S.M., Compocasting of A356-CNT composite, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 9, pp. 1561–1566.

    Article  CAS  Google Scholar 

  25. Singlaa, D., Amulyaa, K., and Murtaza, Q., CNT reinforced aluminum matrix composite—a review, Mater. Today, 2015, vol. 2, nos. 4–5, pp. 2886–2895.

    Article  Google Scholar 

  26. Tjong, S.C., Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and grapheme nanosheets, Mater. Sci. Eng., R, 2013, vol. 74, no. 10, pp. 281–350.

    Article  Google Scholar 

  27. Nayan, N., Murty, S.V.S.N., Sharma, S.C., Sree Kumar, K., and Sinha, P.P., Calorimetric study on mechanically milled aluminum and multiwall carbon nanotube composites, Mater. Charact., 2011, vol. 62, no. 11, pp. 1087–1093.

    CAS  Google Scholar 

  28. Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y., and Kawasaki, A., Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites, Carbon, 2016, vol. 96, pp. 919–928.

    Article  CAS  Google Scholar 

  29. So, K.P., Jeong, J.C., and Park, J.G., SiC formation on carbon nanotube surface for improving wettability with aluminum, Compos. Sci. Technol., 2013, vol. 74, pp. 6–13.

    Article  CAS  Google Scholar 

  30. Arai, S., Suzuki, Y., Nakagawa, J., Yamamoto, T., and Endo, M., Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum, Surf. Coat. Technol., 2012, vol. 212, pp. 207–213.

    Article  CAS  Google Scholar 

  31. Zeng, X., Zhou, G.H., Xu, Q., Xiong, Y., Luo, C., and Wu, J., A new technique for dispersion of carbon nanotube in a metal melt, Mater. Sci. Eng., A, 2010, vol. 527, no. 20, pp. 5335–5340.

    Article  Google Scholar 

  32. Mansoor, M. and Shahid, M., Tribological properties of MWCNTs strengthened aluminum composite fabricated by induction melting, Adv. Mater. Res., 2015, vol. 1101, pp. 62–65.

    Article  Google Scholar 

  33. OCSiAl Company. http://www.ocsial.com.

  34. Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A., Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 2009, vol. 47, no. 3, pp. 570–577.

    Article  CAS  Google Scholar 

  35. Ci, L., Ryu, Z., Jin-Phillipp, N.Y., and Rühle, M., Investigation of the interfacial reaction between multiwalled carbon nanotubes and aluminum, Acta Mater., 2006, vol. 54, no. 20, pp. 5367–5375.

    Article  CAS  Google Scholar 

  36. Chernyshova, T.A., Kobeleva, L.I., Shebo, P., and Panfilov, A.V., Vzaimodeistvie metallicheskikh rasplavov s armiruyushchimi napolnitelyami (Interaction of Metal Melts with Reinforcing Fillers), Moscow: Nauka, 1993.

    Google Scholar 

  37. Prikhod’ko, V.M., Petrova, L.G., and Chudina, O.V., Metallofizicheskie osnovy razrabotki uprochnyayushchikh tekhnologii (Metallophysical Basis for Development of Reinforcing Technologies), Moscow: Mashinostroenie, 2003.

    Google Scholar 

  38. Park, J.G., Keum, D.H., and Lee, Y.H., Strengthening mechanisms in carbon nanotube-reinforced aluminum composites, Carbon, 2015, vol. 95, pp. 690–698.

    Article  CAS  Google Scholar 

  39. Hatch, J.E., Aluminum: Properties and Physical Metallurgy, Metals Park, Oh: Am. Soc. Met., 1984.

    Google Scholar 

  40. Koshkin, N.I. and Shirkevich, M.G., Spravochnik po elementarnoi fizike (Handbook on elementary physics), Moscow: Nauka, 1972.

    Google Scholar 

  41. Arsenault, R.J. and Shi, N., Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 1986, vol. 81, pp. 175–187.

    Article  CAS  Google Scholar 

  42. Kikoin, I.K., Tablitsy fizicheskikh velichin (Tables of Physical Values), Moscow: Atomizdat, 1976.

    Google Scholar 

  43. Deng, L., Young, R.J., Kinloch, I.A., Sun, R., Zhang, G., Noe, L., and Monthioux, M., Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy, Appl. Phys. Lett., 2014, vol. 104, art. ID 051907, pp. 1–4.

    Google Scholar 

  44. Ryu, H.J., Cha, S.I., and Hong, S.H., Generalized shear-lag model for load transfer in SiC/Al metalmatrix composites, J. Mater. Res., 2003, vol. 18, no. 12, pp. 2851–2858.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alekseev.

Additional information

Original Russian Text © A.V. Alekseev, D.Yu. Dubov, M.R. Predtechenskiy, 2017, published in Perspektivnye Materialy, 2017, No. 8, pp. 40–52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.V., Dubov, D.Y. & Predtechenskiy, M.R. Influence of Carbon Nanotubes on Mechanical Properties of Cast Aluminum, Grade A5. Inorg. Mater. Appl. Res. 9, 270–278 (2018). https://doi.org/10.1134/S2075113318020028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020028

Keywords

Navigation