Skip to main content
Log in

Cast Aluminum Surface Reinforced with Carbon Nanotube via Solubilization Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are noteworthy, as they reinforce the metallic matrix, due to mechanical properties, such as the ~ 1.0 TPa Young module. To improve the maintenance of the commercially pure aluminum surface, multi-walled carbon nanotubes were incorporated into the aluminum surface with heat treatment by solid solubilization, in order to improve the surface properties of aluminum. The aluminum samples were chemically attacked for 30, 60 and 120 s and placed in a container with CNTs, being subjected to a temperature of 640 °C for 1 h. Then, the roughness was evaluated by a roughness meter for morphology in the scanning electron microscopy. An intensity of aggregation of CNTs was evaluated by XRD, and the Raman Spectra has evaluated the transfer of charge to the matrix. Microhardness was performed to evaluate the influence of the incorporation of CNTs in the matrix. The results obtained show that the incorporation of CNTs in the aluminum matrix increases the hardness in approximately 20% of the surface, in comparison with the control sample. The process of incorporating CNTs into the aluminum matrix by solubilization is a promising, simple and inexpensive alternative to improve the durability of the aluminum surface.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caracteristicas Quimicas e Físicas do Alumínio (Associação Brasileira do Alumínio, 2015), https://www.abal.org.br/aluminio/caracteristicas-quimicas-e-fisicas. Accessed 14 April 2020

  2. N. Islam, K. Miyazaki, Technol. Forecast. Soc. Chang. 76, 128–140 (2009)

    Article  Google Scholar 

  3. M.D. Mehta, Technology society (Bulletin of Science). 22, 269–273 (2002)

  4. K.U. Kainer, Metal Matrix Nanocomposites: Custom-Made Materials for Automative and Aerospace Engineering (WIlley, Weinheim, 2006)

    Book  Google Scholar 

  5. S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55(1), 41–64 (2010)

    Article  CAS  Google Scholar 

  6. R. Pérez-Bustamante, I. Estrada-Guel, L. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, R. Martínez-Sánchez, J. Alloy. Compd. 450(1–2), 323–326 (2008)

    Article  Google Scholar 

  7. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu, Carbon 37, 855–858 (1999)

    Article  CAS  Google Scholar 

  8. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res. 13(9), 2445–2449 (1998)

    Article  CAS  Google Scholar 

  9. R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Scr. Mater. 53(10), 1159–1163 (2005)

    Article  CAS  Google Scholar 

  10. A.M.K. Esawi, M.A. El Borady, Compos. Sci. Technol. 68(2), 486–492 (2008)

    Article  CAS  Google Scholar 

  11. X. Lei, T. Natsuki, J. Shi, Q.Q. Ni, J. Nanomater. 9, 140 (2011)

    Article  Google Scholar 

  12. S. Simões, F. Viana, M.A.L. Reis, M.F.G. Vieira, Compos. Struct. 108, 992–1000 (2014)

    Article  Google Scholar 

  13. T. Nochaiya, A. Chaipanich, Appl. Surf. Sci. 257, 1941–1945 (2011)

    Article  CAS  Google Scholar 

  14. T. Laha, Y. Liu, A. Agarwal, J. Nanosci. Nanotechnol. 7, 515–524 (2007)

    Article  CAS  Google Scholar 

  15. J. Liao, M.-J. Tan, Powder Technol. 208, 42–48 (2011)

    Article  CAS  Google Scholar 

  16. M.C. Paiva, J.F. Mano, Carbon 42(14), 2849–2854 (2004)

    Article  CAS  Google Scholar 

  17. S. Simões, F. Viana, M.A.L. Reis, M.F.G. Vieira, Compos. Struct. 126, 114–122 (2015)

    Article  Google Scholar 

  18. R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Scripta Mater. 53(10), 1159–1163 (2005)

    Article  CAS  Google Scholar 

  19. H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Compos. Sci. Technol. 70(3), 546–550 (2010)

    Article  CAS  Google Scholar 

  20. S. Simões, F. Viana, M.A.L. Reis, M.F.G. Vieira, Metals 7, 279 (2017)

    Article  Google Scholar 

  21. M.A.L. Reis, S. Simões, J.D. Nero, F. Viana, M.F.G. Vieira, CNT-aluminum metal matrix nanocomposites, in Proceedings ECCM15-15Th European Conference On Composite Materials, Venice, Italy, 24-28 June 2012

  22. F.A.S. Rodrigues, W. Paraguassu, S. Simões, M.F.G. Vieira, J.A.S. Souza, E.M. Braga, M.A.L. Reis, Journal of Nanoscienceand. Nanotechnology. 16, 1–5 (2016)

    Google Scholar 

  23. R.E. Johnsen, F. Krumeich, P. Norby, J. Appl. Crystallogr. 43, 434–447 (2010)

    Article  CAS  Google Scholar 

  24. M.A.L. Reis, N.M.B. Neto, M.E.S. Sousa, P.T. Araujo, S. Simões, M.F. Vieira, F. Viana, C.R.L. Loayza, D.J.A. Borges, D.C.S. Cardoso, P.D.C. Assunção, E.M. Braga, AIP Adv. 8, 015323 (2018)

    Article  Google Scholar 

  25. G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron, M. Lapkowski, S. Lefrant, J. Phys. Chem. 100, 12532–12539 (1996)

    Article  CAS  Google Scholar 

  26. F. Herziger, C. Tyborski, O. Ochedowski, M. Schleberger, J. Maultzsch. Phys. Rev. B 90, 245431 (2014)

    Google Scholar 

  27. S.L.H. Rebelo, A. Guedes, M.E. Szefcyk, A.M. Pereira, J.P. Araújo, C. Freire, Phys. Chem. 18, 12784 (2016)

    CAS  Google Scholar 

  28. S.A. Solin, N. Caswell, J. Raman Spectrosc. 10, 129–135 (1981)

    Article  CAS  Google Scholar 

  29. S.D.M. Brown, M.S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Phys. Rev. B 63, 155414 (2001)

    Google Scholar 

  30. P.T. Araújo, N.M. Barbosa, M.E.S. Sousa, R.S. Angélica, S. Simões, M.F.G. Vieira, M.S. Dresselhaus, M.A.L. Reis, Carbon 124, 348–356 (2017)

    Article  Google Scholar 

  31. G. Keru, P.G. Ndungu, G.T. Mola, V.O. Nyamori, Materials 8(5), 2415 (2015)

    Article  CAS  Google Scholar 

  32. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. 9, 1276–1291 (2007)

    CAS  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, R. SAITO, A. Jorio, Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  34. A. Jorio, Nanotechnol. 2012, 1–16 (2012)

    Google Scholar 

  35. J. Liao, T. Ming-Jen, V. Raju, S.S. Ramanujan, Mater. Sci. Forum 690, 294–297 (2011)

    Article  CAS  Google Scholar 

  36. C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M. Burghard, G.S. Duesberg, S. Roth, Appl. Phys. A 69, 309 (1999)

    Article  CAS  Google Scholar 

  37. P.V. Teredesai, A.K. Sood, D.V.S. Muthu, R. Sen, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 319, 296 (2000)

    Article  CAS  Google Scholar 

  38. R. Kumar, S.B. Cronin, Phys. Rev. B 75, 155421 (2007)

    Article  Google Scholar 

  39. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  Google Scholar 

  40. A.L. Aguiar, E.B. Barros, R.B. Capaz, A.G. Souza-Filho, P.T.C. Freire, J.M. Filho, D. Machon, C. Caillier, Y.A. Kim, H. Muramatsu, M. Endo, A. San-Miguel, J. Phys. Chem. C 115, 5378 (2011)

    Article  CAS  Google Scholar 

  41. X. Zhao, Y. Ando, L.C. Qin, H. Kataura, Y. Maniwa, R. Saito, Appl. Phys. Lett. 81, 2550 (2002)

    Article  CAS  Google Scholar 

  42. V. Mennella, G. Monaco, L. Colangeli, E. Bussoletti, Carbon 33, 115–121 (1995)

    Article  CAS  Google Scholar 

  43. R.J. Nemanich, S.A. Solin, J. Phys. Rev. B 20, 392–401 (1979)

    Article  CAS  Google Scholar 

  44. M. Lazzeri, F. Mauri, J. Phys. Rev. Lett. 97, 266407 (2006)

    Article  Google Scholar 

  45. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A.K. Sood, A.C. Ferrari, Phys. Rev. B 79, 155417 (2009)

    Article  Google Scholar 

  46. L. Pietronero, S. Strassler, J. Phys. Rev. Lett. 47, 593–596 (1981)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the UFPA Mineral Characterization Laboratory (LCM/UFPA) for supporting the XRD analysis and the UFPA High Pressure Vibrational Spectroscopy Laboratory (PPGF/UFPA) for conducting the Raman spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário E. S. Sousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, P.R.O., Loayza, C.R.L., Sousa, M.E.S. et al. Cast Aluminum Surface Reinforced with Carbon Nanotube via Solubilization Treatment. Met. Mater. Int. 28, 802–810 (2022). https://doi.org/10.1007/s12540-020-00914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00914-3

Keywords

Navigation