Skip to main content
Log in

Study of the Optical and Luminescent Properties of Carbon Nanoparticles Using the Microphotoluminescence Method

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The important features of the optical, luminescent, and emission properties of aqueous solutions of carbon nanoparticles (CNPs) of various types in the interaction of particles with electromagnetic radiation have been studied and analyzed. It is shown that the functional groups of CNPs play the dominant role in the spectra of optical absorption and photoluminescence (PL) of particles. Hydrothermal (HT) treatment of CNPs in the presence of ammonia and thermal treatment of particles in a solution of hydrogen peroxide have a strong influence on the absorption spectra, PL, and quantum yield (QY) of emission. It was found that the main PL bands of CNP samples are formed by superposition of several separate PL bands associated with electronic transitions of various types of radiative centers, and their excited states are located in the band gap of the carbon core of the particles. It was established that this circumstance is the reason for the dependence of the position of the PL band peak of most types of CNPs on the excitation wavelength. Linear dependences of the position of the PL band maximum and the emission QY magnitude on temperature and an exponential dependence on the time of HT treatment were revealed. The method of exposure to exciting radiation showed that the change in the PL intensity and the emission QY value under the influence of electromagnetic radiation is due to the photostimulated change in the surface recombination rate and diffuse particle processes in the region of excitation of CNP solutions. The possibility of investigating the stability of PL and QY by exposure of CNPs solutions to excitation radiation was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Li, H., He, X., Liu, Y., Yu, H., Kang, Z., and Lee, S.-T., Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment, Mater. Res. Bull., 2011, vol. 46, pp. 147–151.

    Article  CAS  Google Scholar 

  2. Zhang, J., Shen, W., Pan, D., Zhang, Z., Fang, Y., and Wu, M., Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose, New J. Chem., 2010, vol. 34, pp. 591–593.

    Article  CAS  Google Scholar 

  3. Yan, H., Tan, M., Zhang, D., Cheng, F., Wu, H., Fan, M., Ma, X., and Wang, J., Development of multicolor carbon nanoparticles for cell imaging, Talanta, 2013, vol. 108, pp. 59–65.

    Article  CAS  Google Scholar 

  4. Li, H., Kang, Z., Liu, Y., and Lee, S.-T., Carbon nanodots: synthesis, properties and applications, J. Mater. Chem., 2012, vol. 22, no. 46, pp. 24230–24253.

    Article  CAS  Google Scholar 

  5. Wang, Y. and Hu, A., Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C, 2014, vol. 2, pp. 6921–6939.

    Article  CAS  Google Scholar 

  6. Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S.-T., and Kang, Z., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon, 2011, vol. 49, pp. 605–609.

    Article  CAS  Google Scholar 

  7. Wang, L., Yin, Y., Jain, A., and Zhou, H.S., Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents, Langmuir, 2014, vol. 30, pp. 14270–14275.

    Article  CAS  Google Scholar 

  8. Liu, H., Li, Z., Sun, Y., Geng, X., Hu, Y., Meng, H., Ge, J., and Qu, L., Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability, Sci. Rep., 2018, vol. 8, p. 1086. https://doi.org/10.1038/s41598-018-19373-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du, Q., Zheng, J., Wang, J., Yang, Y., and Liu, X., The synthesis of green fluorescent carbon dots for warm white LEDs, RSC Adv., 2018, vol. 8, pp. 19585–19595.

    Article  CAS  Google Scholar 

  10. Kazaryan, S.A., Nevolin, V.N., and Starodubtsev, N.F., Synthesis and study of new luminescent carbon particles with high emission quantum yield, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 2, pp. 271–284.

    Article  Google Scholar 

  11. Vadivel Vinod, K., Thiagarajan, R., and Savarimuthu, P.A., Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn2+ and turn-off sensing of Pb2+ in aqueous medium and zebrafish eggs, New J. Chem., 2017, vol. 41, no. 24, pp. 15157–15164.

    Article  Google Scholar 

  12. Liu, Q., Li, D., Zhu, Z., Yu, S., Zhang, Y., Yu, D., and Jiang, Y., N-doped carbon dots from phenol derivatives for excellent color rendering WLEDs, RSC Adv., 2018, vol. 8, pp. 4850–4856.

    Article  CAS  Google Scholar 

  13. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G., Processable aqueous dispersions of grapheme nanosheets, Nat. Nanotechnol., 2008, vol. 3, pp. 101–105.

    Article  CAS  Google Scholar 

  14. Li, D., Jing, P., Sun, L., An, Y., Shan, X., Lu, X., Zhou, D., Han, D., Shen, D., Zhai, Y., Qu, S., Zboril, R., and Rogach, A.L., Near-infrared excitation/emission and multiphotoninduced fluorescence of carbon dots, Adv. Mater., 2018, vol. 30, no. 13, p. 1705913.

    Article  Google Scholar 

  15. Xu, M., Chia, J., Hu, N., Huand, D., Wang, Y., Huang, X., Wei, H., Yang, Z., and Zhang, Y., Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions, Nanotechnology, 2014, vol. 25, pp. 395602–395611.

    Article  Google Scholar 

  16. Zhu, C., Guo, S., Fang, Y., and Dong, S., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS Nano, 2010, vol. 4, no. 4, pp. 2429–2437.

    Article  CAS  Google Scholar 

  17. Krishnamoorthy, K., Kim, G.S., and Kim, S.J., Graphene nanosheets: ultrasound assisted synthesis and characterization, Ultrason. Sonochem., 2013, vol. 20, pp. 644–649.

    Article  CAS  Google Scholar 

  18. Suzuki, K., Malfatti, L., Takahashi, M., Carboni, D., Messina, F., Tokudome, Y., Takemoto, M., and Innocenzi, P., Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices, Sci. Rep., 2017, vol. 7, no. 5469. https://doi.org/10.1038/s41598-017-05540-5

  19. Vaz, R., Bettini, J., Júnior, J.G., Lima, E.D.S., Botero, W.G., Santos, J.C.C., and Schiavon, M.A., High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples, J. Photochem. Photobiol., A, 2017, vol. 346, pp. 502–511.

    Article  CAS  Google Scholar 

  20. Xu, Q., Kuang, T., Liu, Y., Cai, L., Peng, X., Sreeprasad, S.T., Zhao, P., Yu, Z., and Li, N., Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biolo-gical applications, J. Mater. Chem. B, 2016, vol. 4, no. 45, pp. 7204–7219.

    Article  CAS  Google Scholar 

  21. Zhi, B., Gallagher, M.J., Frank, B.P., Lyons, T.Y., Qiu, T. A., Da, J., Mensch, A.C., Hamers, R.J., Rosenzweig, Z., Fairbrother, D.H., and Haynes, C.L., Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact, Carbon, 2018, vol. 129, pp. 438–449.

    Article  CAS  Google Scholar 

  22. Bhattacharyya, S., Ehrat, F., Urban, P., Teves, R., Wyrwich, R., Döblinger M., Feldmann, J., Urban, A.S., and Stolarczyk, J.K., Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots, Nat. Commun., 2017, vol. 8, p. 1401. https://doi.org/10.1038/s41467-017-01463-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, Y., Wang, Z., Shao, H., and Jiang, X., Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions, Carbon, 2013, vol. 52, pp. 583–589.

    Article  CAS  Google Scholar 

  24. Li, X., Zhang, S., Kulinich, S. A., Liu, Y., and Zheng, H., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection, Sci. Rep., 2014, vol. 4, p. 4976.https://doi.org/10.1038/srep04976

  25. Sun, D., Ban, R., Zhang, P.-H., Wu, G.-H., Zhang, J.-R., and Zhu, J.-J., Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon, 2013, vol. 64, pp. 424–434.

    Article  CAS  Google Scholar 

  26. Liu, Z., Zou, H., Wang, N., Yang, T., Peng, Z., Wang, J., Li, N., and Huang, C., Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states, Sci. China Chem., 2018, vol. 61, no. 4, pp. 490–496.

    Article  CAS  Google Scholar 

  27. Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X., Li, B., Li, Y., Yu, W., Wang, X., Sun, H., and Yang, B., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater., 2012, vol. 22, pp. 4732–4740.

    Article  CAS  Google Scholar 

  28. Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R.E., Fan, H., and Sun, Z., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Sci. Rep., 2014, vol. 4, art. ID 5294.https://doi.org/10.1038/srep05294

  29. Sciortino, A., Mauro, N., Buscarino, G., Sciortino, L., Popescu, R., Schneider, R., Giammona, G., Gerthsen, D., Cannas, M., and Messina, F., β-C3N4 Nanocrystals: carbon dots with extraordinary morphological, structural, and optical homogeneity, Chem. Mater., 2018, vol. 30, pp. 1695–1700.

    Article  CAS  Google Scholar 

  30. Das, A., Roy, D., Mandal, M., Jaiswal, C., Ta, M., and Mandal, P.K., Carbon dot with pH independent near-unity photoluminescence quantum yield in an aqueous medium: electrostatics-induced Förster resonance energy transfer at submicromolar concentration, J. Phys. Chem. Lett., 2018, vol. 9, pp. 5092–5099.

    Article  CAS  Google Scholar 

  31. Ren, J., Sun, J., Sun, X., Song, R., Xie, Z., and Zhou, S., Precisely controlled up/down-conversion liquid and solid state photoluminescence of carbon dots, Adv. Opt. Mater., 2018, vol. 6, p. 1800115.

    Article  Google Scholar 

  32. Xu, Q., Liu, Y., Gao, C., Wei, J., Zhou, H., Chen, Y., Dong, C., Sreeprasad, T.S., Li, N. and Xia, Z., Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots, J. Mater. Chem. C, 2015, vol. 3, p. 9885.

    Article  CAS  Google Scholar 

  33. Wu, P., Li, W., Wu, Q., Liu, Y. and Liu, S., Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment, RSC Adv., 2017, vol. 7, pp. 44144–44153.

    Article  CAS  Google Scholar 

  34. Amin, N., Afkhami, A., and Madrakian, T., Construction of a novel “Off-On” fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots, J. Lumin., 2018, vol. 194, pp. 768–777.

    Article  CAS  Google Scholar 

  35. Song, Y., Zhu, S., Xiang, S., Zhao, X., Zhang, J., Zhang, H., Fu, Y., and Yang, B., Investigation into the fluorescence quenching behaviors and applications of carbon dots, Nanoscale, 2014, vol. 6, pp. 4676–4682.

    Article  CAS  Google Scholar 

  36. Lu, S., Sui, L., Liu, J., Zhu, S., Chen, A., Jin, M., and Yang, B., Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence, Adv. Mater., 2017, vol. 29, no. 15, pp. 1603443–1603449.

    Article  Google Scholar 

  37. Ding, H., Wei, J.-S., Zhang, P., Zhou, Z.-Y., Gao, Q.-Y., and Xiong, H.-M., Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths, Small, 2018, vol. 14, no. 22, pp. 1800612–1800622.

    Article  Google Scholar 

  38. Liu, J., Li, D., Zhang, K., Yang, M., Sun, H., and Yang, B., One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging, Small, 2018, vol. 14, no. 15, pp. 1703919–1703929.

    Article  Google Scholar 

  39. Wang, W., Wang, B., Embrechts, H., Damm, C., Cadranel, A., Strauss, V., Distaso, M., Hinterberger, V., Guldi, D.M., and Peukert, W., Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots, RSC Adv., 2017, vol. 7, pp. 24771–24780.

    Article  CAS  Google Scholar 

  40. Wang, W., Damm, C., Walter, J., Nacken, T.J., and Peukert, W., Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 466–475.

    Article  CAS  Google Scholar 

  41. Shamsipur, M., Barati, A., Taherpour, A., and Jamshidi, M., Resolving the multiple emission centers in carbon dots: from fluorophore molecular states to aromatic domain states and to carbon-core states, Phys. Chem. Lett., 2018, vol. 9, no. 15, pp. 4189–4198.

    Article  CAS  Google Scholar 

  42. Kazaryan, S.A. and Starodubtsev, N.F., Theoretical and experimental research of luminescent properties of nanoparticles, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 151–161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G.G. Kharisov for the assistance in the works on the synthesis, preparation, and measurement of luminescent and optical parameters of CNP samples and to A.M. Gukasyan for participating in the discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kazaryan or N. F. Starodubtsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, S.A., Starodubtsev, N.F. Study of the Optical and Luminescent Properties of Carbon Nanoparticles Using the Microphotoluminescence Method. Inorg. Mater. Appl. Res. 11, 243–256 (2020). https://doi.org/10.1134/S2075113320020173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020173

Keywords:

Navigation