Skip to main content
Log in

Theoretical and Experimental Research of Luminescent Properties of Nanoparticles

  • Physicochemical Principles of Creating Materials and Technologies
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Theoretical research is performed on isolated nanoparticles (NPs) and NP-containing composite films with establishing analytically the concentration of nonequilibrium charge carriers and luminescence intensity as functions of surface recombination rate s, radius, diffusion length, lifetime of minority charge carriers, and other parameters. A hyperbolic dependence of the photoluminescence intensity (PL) on the parameter s is found. It is shown theoretically and experimentally that the photostimulated rise of s of NPs brings about quenching, while its decline favors amplification of PL. The microphotoluminescence PL intensity is established as a function of exciting laser exposure time for powdered carbon nanoparticles (CNPs), solutions of CNPs, and composite films based on PVOH polymers and CNPs with average particle diameters of 1.3 and 1.7 nm. Furthermore, the PL signal intensity of films processed at temperatures of 100–200°C decreases upon their exposure to a high-power-density 532-nm excitation radiation and rises in the case of films treated at 220–340°C. Almost always, the PL intensity of exposed dry CNP powders abruptly drops. The study allows putting forward a new method for contactless and rapid measurement of the parameters of luminescent NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, S.N. and Baker, G.A., Luminescent carbon nanodots: emergent nanolights, Chem. Int. Ed., 2010, vol. 49, pp. 6726–6744.

    Article  CAS  Google Scholar 

  2. Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., and Jana, N.R., Carbon nanoparticle-based fluorescent bioimaging probes, Sci. Rep., 2013, vol. 3, p. 1473. doi 10.1038/srep01473

    Article  Google Scholar 

  3. Wu, H., Mi, C., Huang, H., Han, B., Li, J., and Xu, S., Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application, J. Lumin., 2012, vol. 132, pp. 1603–1607.

    Article  CAS  Google Scholar 

  4. Li, H., He, X., Liu, Y., Yu, H., Kang, Z., and Lee, S.-T., Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment, Mater. Res. Bull., 2011, vol. 46, pp. 147–151.

    Article  CAS  Google Scholar 

  5. Zhang, J., Shen, W., Pan, D., Zhang, Z., Fang, Y., and Wu, M., Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose, New J. Chem., 2010, vol. 34, pp. 591–593.

    Article  CAS  Google Scholar 

  6. Sattler, K., The energy gap of clusters, nanoparticles, and quantum dots, in Handbook of Thin Film Materials: Deposition and Processing of Thin Films, Vol. 5: Nanomaterials and Magnetic Thin Films, Nalwa, H.S., Ed., Amsterdam: Elsevier, 2003, pp. 61–97.

    Google Scholar 

  7. Wang, Y. and Chen, L., Quantum dots, lighting up the research and development of nanomedicine, Nanotechnol., Biol., and Med., 2011, vol. 7, pp. 385–402.

    Article  CAS  Google Scholar 

  8. Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K., Stacy, A.J., Shen, B., Lanza, G.M., and Pan, D., Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging, Theranostics, 2013, vol. 3, no. 9, pp. 667–686.

    Article  Google Scholar 

  9. Xiao, D., Yuan, D., He, H., and Gao, M., Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination, J. Lumin., 2013, vol. 140, pp. 120–125.

    Article  CAS  Google Scholar 

  10. Yan, H., Tan, M., Zhang, D., Cheng, F., Wu, H., Fan, M., Ma, X., and Wang, J., Development of multicolor carbon nanoparticles for cell imaging, Talanta, 2013, vol. 108, pp. 59–65.

    Article  CAS  Google Scholar 

  11. Liang, Q., Ma, W., Shi, Y., Li, Z., and Yang, X., Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, J. Carbon, 2013, vol. 60, pp. 421–428.

    Article  CAS  Google Scholar 

  12. Wei, Y., Liu, Y., Li, H., He, X., Zhang, Q., Kang, Z., and Lee, S.-T., Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties, J. Colloid Interface Sci., 2011, vol. 358, pp. 146–150.

    Article  CAS  Google Scholar 

  13. Yang, Z.-C., Li, X., and Wang, J., Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process, Carbon, 2011, vol. 49, pp. 5207–5212.

    Article  CAS  Google Scholar 

  14. Rahy, A., Zhou, C., Zheng, J., Park, S.Y., Kim Moon, J., Jang, I., Cho, S.J., and Yang, D.J., Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compounds, Carbon, 2012, vol. 50, pp. 1298–1302.

    Article  CAS  Google Scholar 

  15. Wang, X., Qu, K., Xu, B., Ren, J., and Qu, X., Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin. Intrinsic peroxidase-like catalytic activity and applications, Nano Res., 2011, vol. 4, no. 9, pp. 908–920.

    Article  CAS  Google Scholar 

  16. Vol’kenshtein, F.F., Elektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii (Electronic Processes on the Surfaces of Semiconductors at Chemical Sorption), Moscow: Nauka, 1987.

    Google Scholar 

  17. Pavlov, L.P., Metody izmereniya parametrov poluprovodnikovykh materialov (Measurement of Parameters of Semiconductor Materials), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  18. Einspruch, N.G. and Wisseman, W.R., GaAs Microelectronics, New York: Academic, 1985.

    Google Scholar 

  19. Kazaryan, S.A., Oraevsky, A.N., and Starodubtsev, N.F., Microphotoluminscence of C60 fullerenes doped with ions of rare-earth elements, J. Russ. Laser Res., 1999, vol. 20, no. 3, pp. 271–278.

    Article  CAS  Google Scholar 

  20. Pankove, J.I., Optical Processes in Semiconductors, New York: Dover, 1975.

    Google Scholar 

  21. Fink, D., Chung, W. H., Klett, R., Schmoldt, A., Cardoso, J., Montiel, R., Vazquez, M. H., Wang, L., Hosoi, F., Omichi, H., and Goppelt-Langer, P., Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry, Radiat. Eff. Defects Solids, 1995, vol. 133, pp. 193–208.

    Article  CAS  Google Scholar 

  22. Bao, L., Zhang, Z.-L., Tian, Z.-Q., Zhang, L., Liu, C., Lin, Y., Qi, B., and Pang, D.-W., Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism, Adv. Mater., 2011, vol. 23, pp. 5801–5806.

    Article  CAS  Google Scholar 

  23. Li, X., Zhang, S., Kulinich, S.A., Liu, Y., and Zeng, H., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection, Sci. Rep., 2014, vol. 4, no. 4976, pp. 1–8.

    Google Scholar 

  24. Qu, S., Chen, H., Zheng, X., Cao, J., and Liu, X., Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities, Nanoscale, 2013, vol. 5, pp. 5514–5518.

    Article  CAS  Google Scholar 

  25. Zhou, J., Booker, C., Li, R., Zhou, X., Sham, T.-K., Sun, X., and Ding, Z., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc., 2007, vol. 129, pp. 744–745.

    Article  CAS  Google Scholar 

  26. Zhou, J., Zhou, X., Li, R., Sun, X., Ding, Z., Cutler, J., and Sham, T.-K., Electronic structure and luminescence center of blue luminescent carbon nanocrystals, Chem. Phys. Lett., 2009, vol. 474, pp. 320–324.

    Article  CAS  Google Scholar 

  27. Bourlinos, A.B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., Giannelis, E.P., Bourlinos, A., et al., Surface functionalized carbogenic quantum dots, Small, 2008, vol. 4, no. 4, pp. 455–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kazaryan.

Additional information

Original Russian Text © S.A. Kazaryan, N.F. Starodubtsev, 2017, published in Perspektivnye Materialy, 2017, No. 8, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, S.A., Starodubtsev, N.F. Theoretical and Experimental Research of Luminescent Properties of Nanoparticles. Inorg. Mater. Appl. Res. 9, 151–161 (2018). https://doi.org/10.1134/S2075113318020144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020144

Keywords

Navigation