Skip to main content
Log in

Synthesis and Study of New Luminescent Carbon Particles with High Emission Quantum Yield

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Luminescent carbon nanoparticles (CNPs) having a high mass yield of carbon material and emission quantum yield are synthesized from lentil grain flour via thermal carbonization, followed by treatment in nitric acid, and by the hydrothermal method. The luminescent and optical properties, solubility, and stability of solutions of various CNPs during interaction between particles and electromagnetic radiation are studied and analyzed by photoluminescence and optical absorption methods. When carbonization temperatures are 400 and 500°C, the mass yields of carbon materials are 34.6 and 29.7%, respectively. The amount of CNPs whose sizes are less than 50 nm is 7.2–12.5%, whereas the proportion of particles soluble in pure water is no more than 0.8% of the weight of a carbon material. New particles having a mass yield of 81–104% and high solubility of CNPs in water are formed as a result of special treatment of carbon material powders in HNO3. The solubility of CNP powders is strongly dependent on temperature and pH of a solvent; some samples achieve 30.3 g/L at 96.9°C. The energy of the direct band gap of CNPs is 3.325–3.445 eV, and the carbon nuclei of the particles contain structural defects and various surface groups of high concentration. Some absorption bands, including those at 271 (NH1) and 370 nm (NH2), appear in the optical absorption spectra after hydrothermal treatment of all CNPs in the presence of ammonia or urea. The structural features of the NH1 and NH2 bands, the photoluminescence spectra, and the magnitudes and the stability of quantum yields of different CNPs are thoroughly studied depending on temperature and duration of hydrothermal treatment. The maximum quantum yield of the best CNP samples during excitation with 406 nm laser radiation is 39.3%, which is a promising indicator for practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Li, H., He, X., Liu, Y., Yu, H., Kang, Z., and Lee, S.-T., Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment, Mater. Res. Bull., 2011, vol. 46, pp. 147–151.

    Article  CAS  Google Scholar 

  2. Wang, Y. and Hu, A., Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C, 2014, vol. 2, pp. 6921–6939.

    Article  CAS  Google Scholar 

  3. Li, H., Kang, Z., Liu, Y. and Lee, S.-T., Carbon nanodots: synthesis, properties and applications, J. Mater. Chem., 2012, vol. 46, no. 22, pp. 24230–24253.

    Article  CAS  Google Scholar 

  4. Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., and Jana, N.R., Carbon nanoparticle-based fluorescent bioimaging probes, Sci. Rep., 2013, vol. 3, p. 1473. https://doi.org/10.1038/srep01473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, L., Yin, Y., Jain, A., and Zhou, H.S., Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents, Langmuir, 2014, vol. 30, pp. 14270–14275.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, J., Shen, W., Pan, D., Zhang, Z., Fang, Y., and Wu, M., Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose, New J. Chem., 2010, vol. 34, pp. 591–593.

    Article  CAS  Google Scholar 

  7. Yan, H., Tan, M., Zhang, D., Cheng, F., Wu, H., Fan, M., Ma, X., and Wang, J., Development of multicolor carbon nanoparticles for cell imaging, Talanta, 2013, vol. 108, pp. 59–65.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X. Li, S., Kulinich, S.A., Liu, Y., and Zeng, H., Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection, Sci. Rep., 2014, vol. 4, p. 4976. https://doi.org/10.1038/srep

  9. Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S.-T., and Kang, Z., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, J. Carbon, 2011, vol. 49, pp. 605–609.

    Article  CAS  Google Scholar 

  10. Sattler, K., The energy gap of clusters, nanoparticles, and quantum dots, in Handbook of Thin Films Materials, Vol. 5: Nanomaterials and Magnetic Thin Films, London: Academic, 2001.

  11. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., and Yang, B., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective, Nano Res., 2015, vol. 8, no. 2, pp. 355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  12. Yu, L. Li, B., and You, T., Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions, J. Biosens. Bioelectron., 2015, vol. 74, pp. 263–269.

    Article  CAS  Google Scholar 

  13. Wang, L., Zhu, S.-J., Wang, H.-Y., Qu, S.-N., Zhang, Y.-L., Zhang, J.-H., Chen, Q.-D., Xu, H.-L., Han, W., Yang, B., and Sun, H.-B., Common origin of green luminescence in carbon nanodots and graphene quantum dots, ACS Nano, 2014, vol. 8, pp. 2541–2547.

    Article  CAS  PubMed  Google Scholar 

  14. Mei, X. and Ouyang, J., Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature, J. Carbon, 2011, vol. 49, pp. 5389–5397.

    Article  CAS  Google Scholar 

  15. Chang, D.W., Choi, H.-J., Jeon, I.-Y., Seo, J.-M., Dai, L., and Baek, J.-B., Solvent-free mechanochemical reduction of graphene oxide, J. Carbon, 2014, vol. 77, pp. 501–507.

    Article  CAS  Google Scholar 

  16. Chen, W., Yan, L., and Bangal, P.R. chemical reduction of graphene oxide to graphene by sulfur-containing compounds, J. Phys. Chem. C, 2010, vol. 114, pp. 19885–19890.

    Article  CAS  Google Scholar 

  17. Dey, R.S., Hajra, S., Sahu, R.K., Raj, C.R., and Panigrahi, M.K., A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide, J. Chem. Commun., 2012, vol. 48, pp. 1787–1789.

    Article  CAS  Google Scholar 

  18. Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., and Jeon, S., Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS Nano, 2013, vol. 7, no. 2, pp. 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, M., Liu, S., Li, J., Qu, D., Zhao, H., Gua, X., Hu, X., Xie, Z., Jing, X., and Sun, Z., Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine, J. Adv. Mater., 2014, vol. 26, no. 21, pp. 3554–3560. https://doi.org/10.1002/adma.201306192

    Article  CAS  Google Scholar 

  20. Xiao, D., Yuan, D., He, H., and Gao, M., Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination, J. Lumin., 2013, vol. 140, pp. 120–125.

    Article  CAS  Google Scholar 

  21. Liang, Q., Ma, W., Shi, Y., Li, Z., and Yang, X., Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, J. Carbon, 2013, vol. 60, pp. 421–428.

    Article  CAS  Google Scholar 

  22. Baker, S.N. and Baker, G.A., Luminescent carbon nanodots: emergent nanolights, Angew. Chem. Int. Ed., 2010, vol. 49, pp. 6726–6744.

    Article  CAS  Google Scholar 

  23. Zhang, Y.-Q., Ma, D.-K., Zhuang, Y., Zhang, X., Chen, W., Hong, L.-L., Yan, Q.-X., Yu, K., and Huang, S.-M., One-pot synthesis of N-doped carbon dots with tunable luminescence properties, J. Mater. Chem., 2012, vol. 22, pp. 16714–16718.

    Article  CAS  Google Scholar 

  24. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., Lin, X., and Chen, G., Blue luminescent graphene quantum dots and grapheme oxide prepared by tuning the carbonization degree of citric acid, J. Carbon, 2012, vol. 50, pp. 4738–4743.

    Article  CAS  Google Scholar 

  25. Shen, L., Zhang, L., Chen, M., Chen, X., and Wang, J., The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging, J. Carbon, 2013, vol. 55, pp. 343–349.

    Article  CAS  Google Scholar 

  26. Xu, M., He, G., Li, Z., He, F., Gao, F., Su, Y., Zhang, L., Yang, Z., and Zhang, Y., A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states, J. Nanoscale, 2014, vol. 6, pp. 10307–10315.

    Article  CAS  Google Scholar 

  27. Zhang, Y. and He, J., Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 20154–20159.

    Article  CAS  PubMed  Google Scholar 

  28. Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R.E., Fan, H., and Sun, Z., Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Sci. Rep., 2014, vol. 4, p. 5294. https://doi.org/10.1038/srep05294

  29. Guo, Y., Wang, Z., Shao, H., and Jiang, X., Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions, J. Carbon, 2013, vol. 52, pp. 583–589.

    Article  CAS  Google Scholar 

  30. Sun, D., Ban, R., Zhang, P.-H., Wu, G.-H., Zhang, J.-R., and Zhu, J.-J., Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, J. Carbon, 2013, vol. 64, pp. 424–434.

    Article  CAS  Google Scholar 

  31. Tian, L., Song, Y., Chang, X., and Chen, S., Hydrothermally enhanced photoluminescence of carbon nanoparticles, Scr. Mater., 2010, vol. 62, pp. 883–886.

    Article  CAS  Google Scholar 

  32. Kumar, P. and Bohidar, H.B., Observation of fluorescence from non-functionalized carbon nanoparticles and its solvent dependent spectroscopy, J. Lumin., 2013, vol. 141, pp. 155–161.

    Article  CAS  Google Scholar 

  33. Velapoldi, R.A. and Mielenz, K.D., Standard Reference Materials: A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, Washington, DC: U.S. Natl. Meas. Lab., 1980, p. 139.

    Google Scholar 

  34. Kazaryan, S.A. and Starodubtsev, N.F., Theoretical and experimental research of luminescent properties of nanoparticles, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 151–161.

    Article  Google Scholar 

  35. Wang, W., Damm, C., Walter, J., Nacken, T.J., and Peukert, W., Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis, J. Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 466–475.

    Article  CAS  Google Scholar 

  36. Zhi, B., Gallagher, M.J., Frank, B.P., Lyons, T.Y., Qiu, T.A., Da, J., Mensch, A.C., Hamers, R.J., Rosenzweig, Z., Fairbrother, D.H., and Haynes, C.L., Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact, J. Carbon, 2018, vol. 129, pp. 438–449.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G.G. Kharisov for his assistance in the synthesis, preparation, and measurement of luminescent and optical parameters of CNP samples and to A.M. Gukasyan for his active participation in the discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Kazaryan, V. N. Nevolin or N. F. Starodubtsev.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, S.A., Nevolin, V.N. & Starodubtsev, N.F. Synthesis and Study of New Luminescent Carbon Particles with High Emission Quantum Yield. Inorg. Mater. Appl. Res. 10, 271–284 (2019). https://doi.org/10.1134/S2075113319020217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319020217

Keywords:

Navigation