Skip to main content
Log in

Synthesis of Pd−Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Synthesis of bimetallic nanoparticles (NPs) of the transition metals Rh and Pd in H2O/AOT/isooctane (where AOT is dioctyl sodium sulfosuccinate) reverse-micelle solutions (RMSs) in the presence of molecular oxygen and quercetin, a flavonoid, is described. The methods for NP synthesis used here enable us to prepare alloyed-type Rh−Pd NPs and core/shell Pd/Rh and Rh/Pd NPs with the metal molar ratio of 1 : 1. With both Rh3+ and Pd2+ ions present in an RMS simultaneously, palladium ions are reduced first, and the formed Pd NPs have an inhibitive effect on reduction of rhodium ions. The stability of a mixture of Rh and Pd NPs in RMSs is investigated, and the mixture of NPs with a mean diameter of ~2.7 nm is found to be stable for at least 25 days. Pd and Rh NP-based catalysts are prepared by absorption of the synthesized NPs on γ-Al2O3, and their catalytic activity is tested in the monomolecular hydrogen isotope exchange reaction. A synergetic effect, manifested as an enhanced catalytic activity, is observed for the catalyst prepared by adsorption of the mixture of Rh and Pd NPs on γ-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Walther, A. and Müller, A.H.E., Chem. Rev., 2013, vol. 113, no. 7, pp. 5194–5261. https://doi.org/10.1021/cr300089t

    Article  CAS  Google Scholar 

  2. Gilroy, K.D., Ruditskiy, A., Peng, H.-C., et al., Chem. Rev., 2016, vol. 116, no. 18, pp. 10414–10472. https://doi.org/10.1021/acs.chemrev.6b00211

    Article  CAS  Google Scholar 

  3. Nishida, N., Shiraishi, Y., Kobayashi, S., and Toshima, N., J. Phys. Chem. C, 2008, vol. 112, no. 51, pp. 20284–20290. https://doi.org/10.1021/jp807723j

    Article  CAS  Google Scholar 

  4. Muller, A. and Peglow, S., Nanomaterials, 2018, vol. 8, no. 7, p. 502. https://doi.org/10.3390/nano8070502

    Article  CAS  Google Scholar 

  5. Koh, S. and Strasser, P., J. Am. Chem. Soc., 2007, vol. 129, no. 42, pp. 12624–12625. https://doi.org/10.1021/ja0742784

    Article  CAS  Google Scholar 

  6. Bonnefont, A., Simonov, A.N., Pronkin, S.N., et al., Catal. Today, 2013, vol. 202, pp. 70–78. https://doi.org/10.1016/j.cattod.2012.03.076

    Article  CAS  Google Scholar 

  7. Abdullah, H., Naim, N.M., Bolhan, A., et al., Arabian J. Sci. Eng., 2014, vol. 40, no. 3, pp. 915–922. https://doi.org/10.1007/s13369-014-1557-x

    Article  CAS  Google Scholar 

  8. Srinoi, P., Chen, Y.-T., Vittur, V., et al., Appl. Sci., 2018, vol. 8, no. 7, p. 1106. https://doi.org/10.3390/app8071106

    Article  CAS  Google Scholar 

  9. Duan, H., Zeng, Y., Yao, X., et al., Chem. Mater., 2017, vol. 29, no. 8, pp. 3671–3677. https://doi.org/10.1021/acs.chemmater.7b00544

    Article  CAS  Google Scholar 

  10. Shi, J., Chem. Rev., 2013, vol. 113, no. 3, pp. 2139–2181. https://doi.org/10.1021/cr3002752

    Article  CAS  Google Scholar 

  11. Vedyagin, A.A., Stoyanovskii, V.O., Plyusnin, P.E., et al., J. Alloys Compd., 2018, vol. 749, pp. 155–162. https://doi.org/10.1016/j.jallcom.2018.03.250

    Article  CAS  Google Scholar 

  12. Haldar, K.K., Kundu, S., and Patra, A., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 24, pp. 21946–21953. https://doi.org/10.1021/am507391d

    Article  CAS  Google Scholar 

  13. Njoki, P.N., Roots, M.E.D., and Maye, M.M., ACS Appl. Nano Mater., 2018, vol. 1, no. 10, pp. 5640–5645. https://doi.org/10.1021/acsanm.8b01255

    Article  CAS  Google Scholar 

  14. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., and Eichhorn, B., Nat. Mater., 2008, vol. 7, no. 4, pp. 333–338. https://doi.org/10.1038/nmat2156

    Article  CAS  Google Scholar 

  15. Ferrando, R., Jellinek, J., and Johnston, R.L., Chem. Rev., 2008, vol. 108, no. 3, pp. 845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  Google Scholar 

  16. Gong, Y., Zhong, H., Liu, W., et al., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 1, pp. 776–786. https://doi.org/10.1021/acsami.7b16794

    Article  CAS  Google Scholar 

  17. Bedford, N.M., Showalter, A.R., Woehl, T.J., et al., ACS Nano, 2016, vol. 10, no. 9, pp. 8645–8659. https://doi.org/10.1021/acsnano.6b03963

    Article  CAS  Google Scholar 

  18. Okazaki, T., Seino, S., Kugai, J., et al., Mater. Res. Soc. Adv., 2016, vol. 1, no. 6, pp. 427–432. https://doi.org/10.1557/adv.2016.30

    Article  CAS  Google Scholar 

  19. Wang, X.X., Hwang, S., Pan, Y.-T., et al., Nano Lett., 2018, vol. 18, no. 7, pp. 4163–4171. https://doi.org/10.1021/acs.nanolett.8b00978

    Article  CAS  Google Scholar 

  20. Schaak, R.E., Sra, A.K., Leonard, B.M., et al., J. Am. Chem. Soc., 2005, vol. 127, no. 10, pp. 3506–3515. https://doi.org/10.1021/ja043335f

    Article  CAS  Google Scholar 

  21. Liu, S., Niu, W., Firdoz, S., and Zhang, W., Langmuir, 2017, vol. 33, no. 43, pp. 12254–12259. https://doi.org/10.1021/acs.langmuir.7b02497

    Article  CAS  Google Scholar 

  22. Straney, P.J., Diemler, N.A., Smith, A.M., et al., Langmuir, 2018, vol. 34, no. 3, pp. 1084–1091. https://doi.org/10.1021/acs.langmuir.7b03309

    Article  CAS  Google Scholar 

  23. Liu, L. and Corma, A., Chem. Rev., 2018, vol. 118, no. 10, pp. 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  Google Scholar 

  24. Shubin, Y.V., Plyusnin, P.E., and Korenev, S.V., J. Alloys Compd., 2015, vol. 622, pp. 1055–1060. https://doi.org/10.1016/j.jallcom.2014.10.187

    Article  CAS  Google Scholar 

  25. Swiatkowska-Warkocka, Z., Pyatenko, A., Krok, F., et al., Sci. Rep., 2015, vol. 5, p. 09849. https://doi.org/10.1038/srep09849

    Article  CAS  Google Scholar 

  26. Magudapathy, P., Srivastava, S.K., Gangopadhyay, P., et al., Chem. Phys. Lett., 2017, vol. 667, pp. 38–44. https://doi.org/10.1016/j.cplett.2016.11.041

    Article  CAS  Google Scholar 

  27. Ghosh Chaudhuri, R. and Paria, S., Chem. Rev., 2012, vol. 112, pp. 2373–2433. https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  28. Cong, C., Nakayama, S., Maenosono, S., and Harada, M., Ind. Eng. Chem. Res., 2017, vol. 57, no. 1, pp. 179–190. https://doi.org/10.1021/acs.iecr.7b03154

    Article  CAS  Google Scholar 

  29. Lombardo, M.T. and Pozzo, L.D., Langmuir, 2015, vol. 31, no. 4, pp. 1344–1352. https://doi.org/10.1021/la504520p

    Article  CAS  Google Scholar 

  30. Codari, F., Moscatelli, D., Furlan, M., et al., Langmuir, 2014, vol. 30, no. 8, pp. 2266–2273. https://doi.org/10.1021/la5001039

    Article  CAS  Google Scholar 

  31. Kim, S.-W., Park, J., Jang, Y., et al., Nano Lett., 2003, vol. 3, no. 9, pp. 1289–1291. https://doi.org/10.1021/nl0343405

    Article  CAS  Google Scholar 

  32. Son, S.U., Jang, Y., Yoon, K.Y., et al., Nano Lett., 2004, vol. 4, no. 6, pp. 1147–1151. https://doi.org/10.1021/nl049519+

    Article  CAS  Google Scholar 

  33. Gugliotti, L.A., Feldheim, D.L., and Eaton, B.E., Science, 2004, vol. 304, no. 5672, pp. 850–852. https://doi.org/10.1126/science.1095678

    Article  CAS  Google Scholar 

  34. Caswell, K.K., Wilson, J.N., Bunz, U.H.F., and Murphy, C.J., J. Am. Chem. Soc., 2003, vol. 125, no. 46, pp. 13914–13915. https://doi.org/10.1021/ja037969i

    Article  CAS  Google Scholar 

  35. Penner, R.M., MRS Bull., 2010, vol. 35, no. 10, pp. 771–777. https://doi.org/10.1557/mrs2010.506

    Article  CAS  Google Scholar 

  36. Cui, C.-H., Li, H.-H., and Yu, S.-H., Chem. Commun., 2010, vol. 46, pp. 940–942. https://doi.org/10.1039/B920705H

    Article  CAS  Google Scholar 

  37. Xiong, Y., Wiley, B., Chen, J., et al., Angew. Chem., Int. Ed., 2005, vol. 44, no. 48, pp. 7913–7917. https://doi.org/10.1002/anie.200502722

    Article  CAS  Google Scholar 

  38. Ding, J.H. and Gin, D.L., Chem. Mater., 2000, vol. 12, no. 1, pp. 22–24. https://doi.org/10.1021/cm990603d

    Article  CAS  Google Scholar 

  39. Cason, J.P., Miller, M.E., Thompson, J.B., and Roberts, C.B., J. Phys. Chem. B, 2001, vol. 105, no. 12, pp. 2297–2302. https://doi.org/10.1021/jp002127g

    Article  CAS  Google Scholar 

  40. Wolf, S. and Feldmann, C., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, no. 51, pp. 15728–15752. https://doi.org/10.1002/anie.201604263

    Article  CAS  Google Scholar 

  41. Pileni, M.P., J. Phys. Chem., 1993, vol. 97, no. 27, pp. 6961–6973. https://doi.org/10.1021/j100129a008

    Article  CAS  Google Scholar 

  42. Biffis, A., Centomo, P., Del Zotto, A., and Zecca, M., Chem. Rev., 2018, vol. 118, no. 4, pp. 2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443

    Article  CAS  Google Scholar 

  43. Álvarez, A., Bansode, A., Urakawa, A., et al., Chem. Rev., 2017, vol. 117, no. 14, pp. 9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  Google Scholar 

  44. Meemken, F. and Baiker, A., Chem. Rev., 2017, vol. 117, no. 17, pp. 11522–11569. https://doi.org/10.1021/acs.chemrev.7b00272

    Article  CAS  Google Scholar 

  45. Aiken, J.D. and Finke, R.G., Chem. Mater., 1999, vol. 11, no. 4, pp. 1035–1047. https://doi.org/10.1021/cm980699w

    Article  CAS  Google Scholar 

  46. Turner, A. and Price, S., Environ. Sci. Technol., 2008, vol. 42, no. 24, pp. 9443–9448. https://doi.org/10.1021/es801189q

    Article  CAS  Google Scholar 

  47. Yoon, B. and Wai, C.M., J. Am. Chem. Soc., 2005, vol. 127, no. 49, pp. 17174–17175. https://doi.org/10.1021/ja055530f

    Article  CAS  Google Scholar 

  48. Banerjee, S., Narasimhaiah, G.M., Mukhopadhyay, A., and Bhattacharya, A., J. Phys. Chem. C, 2016, vol. 120, no. 45, pp. 25806–25821. https://doi.org/10.1021/acs.jpcc.6b07719

    Article  CAS  Google Scholar 

  49. Montemore, M.M., van Spronsen, M.A., Madix, R.J., and Friend, C.M., Chem. Rev., 2017, vol. 118, no. 5, pp. 2816–2862. https://doi.org/10.1021/acs.chemrev.7b00217

    Article  CAS  Google Scholar 

  50. Jeong, H., Lee, G., Kim, B.-S., et al., J. Am. Chem. Soc., 2018, vol. 140, no. 30, pp. 9558–9565. https://doi.org/10.1021/jacs.8b04613

    Article  CAS  Google Scholar 

  51. Inderwildi, O.R., Jenkins, S.J., and King, D.A., J. Am. Chem. Soc., 2008, vol. 130, no. 7, pp. 2213–2220. https://doi.org/10.1021/ja0754913

    Article  CAS  Google Scholar 

  52. Narayanamoorthy, B., Balaji, S., Sita, C., et al., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 12, pp. 6480–6490. https://doi.org/10.1021/acssuschemeng.6b01257

    Article  CAS  Google Scholar 

  53. Wu, X., Xu, L., and Weng, D., Appl. Surf. Sci., 2004, vol. 221, nos. 1–4, pp. 375–383. https://doi.org/10.1016/s0169-4332(03)00938-3

    Article  CAS  Google Scholar 

  54. Huang, R., Wen, Y.-H., Zhu, Z.-Z., and Sun, S.-G., J. Phys. Chem. C, 2012, vol. 116, no. 15, pp. 8664–8671. https://doi.org/10.1021/jp3015639

    Article  CAS  Google Scholar 

  55. Kobayashi, H., Morita, H., Yamauchi, M., et al., J. Am. Chem. Soc., 2012, vol. 134, no. 30, pp. 12390–12393. https://doi.org/10.1021/ja305031y

    Article  CAS  Google Scholar 

  56. Ong, M.D., Jacobs, B.W., Sugar, J.D., et al., Chem. Mater., 2012, vol. 24, no. 6, pp. 996–1004. https://doi.org/10.1021/cm202688m

    Article  CAS  Google Scholar 

  57. Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., et al., Rev. Sci. Instrum., 2007, vol. 78, p. 013705. https://doi.org/10.1063/1.2432410

    Article  CAS  Google Scholar 

  58. Sergeev, M.O., Revina, A.A., Zavoronkova, K.N., et al., Nanotechnol. Rev., 2014, vol. 3, no. 5, pp. 515–525. https://doi.org/10.1515/ntrev-2014-0011

    Article  CAS  Google Scholar 

  59. Bukhari, S.B., Memon, S., Mahroof-Tahir, M., and Bhanger, M.I., Spectrochim. Acta, Part A, 2009, vol. 71, no. 5, pp. 1901–1906. https://doi.org/10.1016/j.saa.2008.07.030

    Article  CAS  Google Scholar 

  60. Revina, A.A. and Zaitsev, P.M., Russ. J. Electrochem., 2012, vol. 48, no. 4, pp. 412–417.

    Article  CAS  Google Scholar 

  61. Weaver, J.H., Phys. Rev. B, 1975, vol. 11, no. 4, pp. 1416–1425. https://doi.org/10.1103/PhysRevB.11.1416

    Article  CAS  Google Scholar 

  62. Creighton, J.A. and Eadon, D.G., J. Chem. Soc. Faraday Trans., 1991, vol. 87, no. 24, pp. 3881–3891. https://doi.org/10.1039/FT9918703881

    Article  CAS  Google Scholar 

  63. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv. Spravochnik (Constants of Inorganic Substances. Handbook), Moscow: Drofa, 2008.

  64. Enghag, P., Encyclopedia of the Elements. Technical Data, History, Processing, Applications, Weinheim: WILEY-VCH, 2004.

    Google Scholar 

  65. Henglein, A., J. Phys. Chem., 1993, vol. 97, no. 21, pp. 5457–5471. https://doi.org/10.1021/j100123a004

    Article  CAS  Google Scholar 

  66. Belloni, J., Curr. Opin. Colloid Interface Sci., 1996, vol. 1, pp. 184–196. https://doi.org/10.1016/S1359-0294(96)80003-3

    Article  CAS  Google Scholar 

  67. Khatouri, J., Mostafavi, M., and Belloni, J., Proc. IS&T's 48th Annual Conference, Washington,1995, Washington, DC: Springfield, 1995, pp. 315–317.

  68. Belloni, J., Khatouri, J., Mostafavi, M., and Amblard, J., AIP Conf. Proc., 1994, vol. 298, pp. 541–550. https://doi.org/10.1063/1.45414

    Article  CAS  Google Scholar 

  69. Khatouri, J., Mostafavi, M., and Belloni, J., in Photochemistry and Radiation Chemistry: Complementary Methods for the Study of Electron-Transfer, Wishart, J. and Nocera, D., Eds., Washington, DC: ACS Books, 1996.

    Google Scholar 

  70. Vedyagin, A.A., Gavrilov, M.S., Volodin, A.M., et al., Top. Catal., 2013, vol. 56, no. 11, pp. 1008–1014. https://doi.org/10.1007/s11244-013-0064-8

    Article  CAS  Google Scholar 

  71. Henglein, A., J. Phys. Chem., 1993, vol. 97, no. 21, pp. 5457–5471. https://doi.org/10.1021/j100123a004

    Article  CAS  Google Scholar 

  72. Revina, A.A., Larionov, O.G., and Belyakova, L.D., Sorbtsionnye Khromatogr.Protsessy, 2006, vol. 6, no. 2, pp. 265–272.

    Google Scholar 

  73. Zhang, H., Haba, M., Okumura, M., et al., Langmuir, 2013, vol. 29, no. 33, pp. 10330–10339. https://doi.org/10.1021/la401878g

    Article  CAS  Google Scholar 

  74. Xiong, Y., Chen, J., Wiley, B., et al., Nano Lett., 2005, vol. 5, no. 7, pp. 1237–1242. https://doi.org/10.1021/nl0508826

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Nanoparticle size measurements were performed using the facilities of the Center for Collective Use Physical Methods of Investigations, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 11-03-90738 and 09-08-00758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Revina.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, M.O., Revina, A.A., Boeva, O.A. et al. Synthesis of Pd−Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties. Prot Met Phys Chem Surf 56, 63–74 (2020). https://doi.org/10.1134/S2070205120010207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120010207

Keywords:

Navigation