Skip to main content
Log in

On the accuracy of the direct discrete simulation of the Landau collision integral by the Boltzmann integral

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The Landau (Fokker–Planck) integral of Coulomb collisions is an integral component of the physical and mathematical models of both laboratory and space plasma, in which the intermediate collisionality regime is important. This paper discusses the method for the direct statistical simulation of the Monte Carlo type for a kinetic equation with a nonlinear operator of the Landau–Fokker–Planck (LFP) Coulomb collisions. This method is based on the approximation of the Landau collision integral by the Boltzmann collision integral. The paper has two main objectives: firstly, to obtain numerical estimates of the order of approximation of the Landau collision integral by the Boltzmann integral and, secondly, to explore the possibilities of optimizing the algorithm for multiply charged ions. The results are illustrated by the calculations of the problem on the relaxation of the initial distribution to equilibrium for one and two components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, “Kinetic equation for the case of Coulomb interaction,” Phys. Zh. Sow. 10, 154 (1936).

    Google Scholar 

  2. M. N. Rosenbluth, W. M. MacDonald, and D. Judd, “Fokker-Planck equation for an inverse-square force,” Phys. Rev. 107, 1 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. A. Trubnikov, “Particle interactions in a fully ionized plasma,” in Review of Plasma Physics (Gosatomizdat, Moscow, 1963; Consultant Bureau, New York, 1965), Vol. 1, rus. pp. 98–182.

    Google Scholar 

  4. Yu. N. Dnestrovskii and D. P. Kostomarov, Numerical Simulation of Plasmas (Nauka, Moscow, 1982; Springer, Berlin, Heidelberg, 1986).

    Book  Google Scholar 

  5. C. F. F. Karney, “Fokker-Planck and quasi linear code,” Comput. Phys. Rep. 4, 183–244 (1986).

    Article  Google Scholar 

  6. C. Cercignani, Theory and Application of Boltzmanm Equation (Scottish Academic, Edinburgh, London, 1975).

    Google Scholar 

  7. A. V. Bobylev, “On expansion of Boltzmann integral into Landau series,” Sov. Phys. Dokl. 20, 865–887 (1976).

    Google Scholar 

  8. A. V. Bobylev, “Landau approximation in kinetic theory of gases and plasma,” KIAM Preprint No. 76 (Keldysh Inst. Appl. Phys., Moscow, 1974).

    Google Scholar 

  9. A. V. Bobylev, I. F. Potapenko, and S. A. Karpov, “Monte-Carlo method for two component plasmas,” Mat. Model. 24 (3), 35–49 (2012).

    MathSciNet  MATH  Google Scholar 

  10. A. V. Bobylev, I. F. Potapenko, and S. A. Karpov, “Monte-Carlo simulation of the kinetic collisional equation with external fields,” Math. Models Comput. Simul. 6, 598–611 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. V. Bobylev, I. F. Potapenko, and S. A. Karpov, “DSMC methods for multicomponent plasmas,” AIP Conf. Proc. 1501, 541–548 (2012).

    Article  Google Scholar 

  12. A. V. Bobylev and I. F. Potapenko, “Monte-Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas,” J. Comput. Phys. 246, 123–144 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  14. G. A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  15. A. V. Bobylev, S. A. Karpov, and I. F. Potapenko, “Monte-Carlo method for two component plasmas,” KIAM Preprint No. 21 (Keldysh Inst. Appl. Math., Moscow, 2012).

    MATH  Google Scholar 

  16. M. Kac, Probability and Related Topics in Physical Sciences (Interscience, London, New York, 1957).

    Google Scholar 

  17. A. V. Bobylev and K. Nanbu, “Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation,” Phys. Rev. E 61, 4576–4586 (2000).

    Article  Google Scholar 

  18. K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,” Phys. Rev. E 55, 4642–4652 (1997).

    Article  Google Scholar 

  19. A. V. Bobylev, E. Mossberg, and I. F. Potapenko, “A DSMC method for the Landau-Fokker-Planck equation,” in Proceedings of 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, July 21–28, 2006, pp. 479–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Karpov.

Additional information

Original Russian Text © S.A. Karpov, I.F. Potapenko, A.V. Bobylev, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 9, pp. 73–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, S.A., Potapenko, I.F. & Bobylev, A.V. On the accuracy of the direct discrete simulation of the Landau collision integral by the Boltzmann integral. Math Models Comput Simul 9, 206–220 (2017). https://doi.org/10.1134/S2070048217020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048217020065

Keywords

Navigation