Skip to main content
Log in

A Piecewise-Parabolic Reconstruction of the Physical Variables in a Low-Dissipation HLL Method for the Numerical Solution of the Equations of Special Relativistic Hydrodynamics

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

A construction of the original HLL method for solving problems of relativistic hydrodynamics by using a piecewise-parabolic reconstruction of the physical variables is described. The resulting numerical method makes it possible to reproduce the numerical solutions with small dissipation at the discontinuities. The method is verified in problems of discontinuity breakdown in one-dimensional and two-dimensional formulation. The accuracy of the numerical scheme is studied in one-dimensional discontinuity breakdown problems. The method is also tested in typical astrophysical problems: interaction of relativistic jets, collision of clouds at relativistic speeds, and supernova explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Komissarov, S. and Porth, O., Numerical Simulations of Jets, New Astron. Rev., 2021, vol. 92, article no. 101610.

    Article  Google Scholar 

  2. Siegel, D.M. and Metzger, B.D., Three-Dimensional GRMHD Simulations of Neutrino-Cooled Accretion Disks from Neutron Star Mergers, Astrophys. J., 2018, vol. 858, article no. 52.

  3. Willingale, R. and Meszaros, P., Gamma-Ray Bursts and Fast Transients. Multi-Wavelength Observations and Multi-Messenger Signals, Space Sci. Rev., 2017, vol. 207, pp. 63–86.

    Article  Google Scholar 

  4. Barkov, M., Lyutikov, M., Klingler, N., and Bordas, P., Kinetic “Jets” from Fast-Moving Pulsars, Monthly Not. Royal Astron. Soc., 2019, vol. 485, pp. 2041–2053.

    Article  Google Scholar 

  5. Olmi, B. and Bucciantini, N., Full-3D Relativistic MHD Simulations of Bow Shock Pulsar Wind Nebulae: Dynamics, Monthly Not. Royal Astron. Soc., 2019, vol. 484, pp. 5755–5770.

    Article  Google Scholar 

  6. Huber, D., Kissmann, R., Reimer, A., and Reimer, O., Relativistic Fluid Modelling of Gamma-Ray Binaries. I. The Model, Astron. Astrophy., 2021, vol. 646, article no. A91.

    Article  Google Scholar 

  7. Huber, D., Kissmann, R., and Reimer, O., Relativistic Fluid Modelling of Gamma-Ray Binaries. II. Appl. LS 5039, Astron. Astrophys., 2021, vol. 649, article no. A71.

    Article  Google Scholar 

  8. Busza, W., Rajagopal, K., and van der Schee, W., Heavy Ion Collisions: The Big Picture and the Big Questions, Annual Rev. Nucl. Particle Sci., 2018, vol. 68, pp. 339–376.

    Article  Google Scholar 

  9. Loffler, F., Faber, J., Bentivegna, E., et al., The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics, Class. Quant. Grav., 2012, vol. 29, article no. 115001.

    Article  MATH  Google Scholar 

  10. Rivera-Paleo, F.J. and Guzman, F.S., CAFE-R: A Code That Solves the Special Relativistic Radiation Hydrodynamics Equations, Astrophys. J. Suppl. Ser., 2019, vol. 241, article no. 28.

    Article  Google Scholar 

  11. Aloy, M., Ibanez, J., Marti, J., and Muller, E., GENESIS: A High-Resolution Code for Three-Dimensional Relativistic Hydrodynamics, Astrophys. J. Suppl. Ser., 1999, vol. 122, pp. 122–151.

    Article  Google Scholar 

  12. Mignone, A., Bodo, G., Massaglia, S., et al., PLUTO: A Numerical Code for Computational Astrophysics, Astrophys. J. Suppl. Ser., 2007, vol. 170, pp. 228–242.

    Article  Google Scholar 

  13. Zhang, W. and MacFayden, A., RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code, Astrophys. J. Suppl. Ser., 2006, vol. 164, pp. 255–279.

    Article  Google Scholar 

  14. Duffel, P. and MacFayden, A., TESS: A Relativistic Hydrodynamics Code on a Moving Voronoi Mesh, Astrophys. J. Suppl. Ser., 2011, vol. 197, article no. 15.

    Article  Google Scholar 

  15. Huber, D. and Kissmann, R., Special Relativistic Hydrodynamics with CRONOS, Astron. Astrophys., 2021, vol. 653, article no. A164.

    Article  Google Scholar 

  16. Popov, M. and Ustyugov, S., Piecewise Parabolic Method on Local Stencil for Gasdynamic Simulations, Comp. Math. Math. Phys., 2007, vol. 47, iss. 12, pp. 1970–1989.

    Article  MathSciNet  Google Scholar 

  17. Popov, M. and Ustyugov, S., Piecewise Parabolic Method on a Local Stencil for Ideal Magnetohydrodynamics, Comp. Math. Math. Phys., 2008, vol. 48, iss. 3, pp. 477–499.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ustyugov, S.D., Popov, M.V., Kritsuk, A.G., and Norman, M.L., Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation, J. Comp. Phys., 2009, vol. 228, pp. 7614–7633.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kulikov, I. and Vorobyov, E., Using the PPML Approach for Constructing a Low-Dissipation, Operator-Splitting Scheme for Numerical Simulations of Hydrodynamic Flows, J. Comp. Phys., 2016, vol. 317, pp. 318–346.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kulikov, I., Chernykh, I., and Tutukov, A., A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations That Is Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems, Astrophys. J. Suppl. Ser., 2019, vol. 243, article no. 4.

    Article  Google Scholar 

  21. Kulikov, I., A New Code for the Numerical Simulation of Relativistic Flows on Supercomputers by Means of a Low-Dissipation Scheme, Comp. Phys. Comm., 2020, vol. 257, article no. 107532.

    Article  MathSciNet  Google Scholar 

  22. Kulikov, I.M., A Low-Dissipation Numerical Scheme Based on a Piecewise Parabolic Method on a Local Stencil for Mathematical Modeling of Relativistic Hydrodynamic Flows, Num. An. Appl., 2020, vol. 13, iss. 2, pp. 117–126.

    Article  MathSciNet  Google Scholar 

  23. Harten, A., Lax, P., and van Leer, B., On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Rev., 1983, vol. 25, pp. 289–315.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., and Protasov, V.A., An Efficient Optimization of HLL Method for the Second Generation of Intel Xeon Phi Processor, Lobachevskii J. Math., 2018, vol. 39, iss. 4, pp. 543–551.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kulikov, I.M., A Piecewise-Linear Reconstruction to Reduce the Dissipation of the HLL Method in Solving the Gas Dynamics Equations, Num. An. Appl., 2022, vol. 15, no. 2, pp. 112–124.

    Article  MathSciNet  Google Scholar 

  26. Pons, J., Marti, J., and Mueller, E., The Exact Solution of the Riemann Problem with Non-Zero Tangential Velocities in Relativistic Hydrodynamics, J. Fluid Mech., 2000, vol. 422, pp. 125–139.

    Article  MathSciNet  MATH  Google Scholar 

  27. Marti, J. and Mueller, E., Numerical Hydrodynamics in Special Relativity, Living Rev. Relativity, 2003, vol. 6, article no. 7.

    Article  MathSciNet  Google Scholar 

  28. Godunov, S.K., A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics, Mat. Sb., 1959, vol. 47, pp. 271–306.

    MathSciNet  MATH  Google Scholar 

  29. Kolgan, V.P., Application of the Principle of Minimizing the Derivative to the Construction of Finite-Difference Schemes for Computing Discontinuous Gas Flows, TsAGI Sci. J., 1972, vol. 3, pp. 68–77.

    Google Scholar 

  30. Collela, P. and Woodward, P.R., The Piecewise Parabolic Method (PPM) Gas-Dynamical Simulations, J. Comp. Phys., 1984, vol. 54, pp. 174–201.

    Article  MATH  Google Scholar 

  31. Lee, D., Faller, H., and Reyes, A., The Piecewise Cubic Method (PCM) for Computational Fluid Dynamics, J. Comp. Phys., 2017, vol. 341, pp. 230–257.

    Article  MathSciNet  MATH  Google Scholar 

  32. Deng, X., Boivin, P., and Xiao, F., A New Formulation for Two-Wave Riemann Solver Accurate at Contact Interfaces, Phys. Fluids, 2019, vol. 31, article no. 046102.

    Article  Google Scholar 

  33. Kulikov, I.M., Chernykh, I.G., Sapetina, A.F., Lomakin, S.V., and Tutukov, A.V., A New Rusanov-Type Solver with a Local Linear Solution Reconstruction for Numerical Modeling of White Dwarf Mergers by Means Massive Parallel Supercomputers, Lobachevskii J. Math., 2020, vol. 41, iss. 8, pp. 1485–1491.

    Article  MathSciNet  MATH  Google Scholar 

  34. Kriksin, Y.A. and Tishkin, V.F., Numerical Solution of the Einfeldt Problem based on the Discontinuous Galerkin Method, Preprint of Keldysh Institute of Applied Mathematics, Moscow, 2019, no. 90.

  35. Kriksin, Y.A. and Tishkin, V.F., Variational Entropic Regularization of the Discontinuous Galerkin Method for Gasdynamic Equations, Math. Mod. Comp. Simulat., 2019, vol. 11, pp. 1032–1040.

    Article  MathSciNet  Google Scholar 

  36. Mathews, W., The Hydromagnetic Free Expansion of a Relativistic Gas, Astrophys. J., 1971, vol. 165, pp. 147–164.

    Article  Google Scholar 

  37. Perucho, M. and Marti, J.M., A Numerical Simulation of the Evolution and Fate of a Fanaroff–Riley Type I Jet. The Case of 3C 31, Monthly Not. Royal Astron. Soc., 2007, vol. 382, pp. 526–542.

    Article  Google Scholar 

  38. Perucho, M., Marti, J.M., and Quilis, V., Long-Term FRII Jet Evolution in Dense Environments, Monthly Not. Royal Astron. Soc., 2022, vol. 510, pp. 2084–2096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. Kulikov or D. A. Karavaev.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2023, Vol. 26, No. 1, pp. 57-73. https://doi.org/10.15372/SJNM20230105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M., Karavaev, D.A. A Piecewise-Parabolic Reconstruction of the Physical Variables in a Low-Dissipation HLL Method for the Numerical Solution of the Equations of Special Relativistic Hydrodynamics. Numer. Analys. Appl. 16, 45–60 (2023). https://doi.org/10.1134/S1995423923010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423923010056

Keywords

Navigation