Skip to main content
Log in

Using a Low Dissipation Lax–Friedrichs Scheme for Numerical Modeling of Relativistic Flows

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The Lax–Friedrichs scheme is traditionally considered an alternative to the Godunov scheme, since it does not require solving the Riemann problem. In the equations of special relativistic hydrodynamics, the speed of light is a natural limitation of the wave propagation speed. The use of such an upper estimate of the slopes of characteristics in the schemes of Roe, the Rusanov type, or the Harten–Lax–van Leer family leads to a construction equivalent to the Lax–Friedrichs scheme. Due to the absolute robustness of the scheme, a number of software implementations have been developed on its basis for modeling relativistic gas flows. In this paper, we propose a piecewise parabolic reconstruction of the physical variables to reduce dissipation of the numerical method. The use of such a reconstruction in the Lax–Friedrichs scheme allows us to obtain an absolutely robust simple scheme of high-order accuracy on smooth solutions and with small dissipation at the discontinuities. The computational experiments carried out in the article confirm these properties of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Kulikov, I.M. and Karavaev D.A., A Piecewise-Parabolic Reconstruction of the Physical Variables in a Low-Dissipation HLL Method for the Numerical Solution of the Equations of Special Relativistic Hydrodynamics, Num. An. Appl., 2023, vol. 16, no. 1, pp. 45–60.

    Article  MathSciNet  Google Scholar 

  2. Kulikov, I.M., A low-Dissipation Numerical Scheme Based on a Piecewise Parabolic Method on a Local Stencil for Mathematical Modeling of Relativistic Hydrodynamic Flows, Num. An. Appl., 2020, vol. 13, no. 2, pp. 117–126.

    Article  MathSciNet  Google Scholar 

  3. Lamberts, A., Fromang, S., Dubus, G., and Teyssier, R., Simulating Gamma-Ray Binaries with a Relativistic Extension of RAMSES, Astr. Astrophy., 2013, vol. 560, article no. A79.

  4. Anton, L., Miralles, J., Marti, J., et al., Relativistic Magnetohydrodynamics: Renormalized Eigenvectors and Full Wave Decomposition Riemann Solver, Astrophys. J. Suppl. Ser., 2010, vol. 188, pp. 1–31.

    Article  Google Scholar 

  5. Guercilena, F., Radice, D., and Rezzolla, L., Entropy-Limited Hydrodynamics: A Novel Approach to Relativistic Hydrodynamics, Computat. Astrophys. Cosmol., 2017, vol. 4, article no. 3.

    Article  Google Scholar 

  6. Guermond, J.-L., Pasquetti, R., and Popov, B., Entropy Viscosity Method for Nonlinear Conservation Laws, J. Comput. Phys., 2011, vol. 230, pp. 4248–4267.

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, K., Design of Provably Physical-Constraint-Preserving Methods for General Relativistic Hydrodynamics, Phys. Rev. D, 2017, vol. 95, article no. 103001.

    Article  MathSciNet  Google Scholar 

  8. Kulikov, I. and Vorobyov, E., Using the PPML Approach for Constructing a Low-Dissipation, Operator-Splitting Scheme for Numerical Simulations of Hydrodynamic Flows, J. Comput. Phys., 2016, vol. 317, pp. 318–346.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kriksin, Y.A. and Tishkin, V.F., Variational Entropic Regularization of the Discontinuous Galerkin Method for Gasdynamic Equations, Math. Mod. Comp. Simul., 2019, vol. 11, pp. 1032–1040.

    Article  MathSciNet  Google Scholar 

  10. Lora-Clavijo, F., Cruz-Osorio, A., and Guzman, F., CAFE: A New Relativistic MHD Code, Astrophys. J. Suppl. Ser., 2015, vol. 218, article no. 24.

    Article  Google Scholar 

  11. Marti, J. and Mueller, E., The Analytical Solution of the Riemann Problem in Relativistic Hydrodynamics, J. Fluid Mech., 1994, vol. 258, pp. 317–333.

    Article  MathSciNet  MATH  Google Scholar 

  12. Huber, D. and Kissmann, R., Special Relativistic Hydrodynamics with CRONOS, Astron. Astrophys., 2021, vol. 653, article no. A164.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. Kulikov or D. A. Karavaev.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2023, Vol. 26, No. 4, pp. 389-400. https://doi.org/10.15372/SJNM20230404.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M., Karavaev, D.A. Using a Low Dissipation Lax–Friedrichs Scheme for Numerical Modeling of Relativistic Flows. Numer. Analys. Appl. 16, 326–336 (2023). https://doi.org/10.1134/S1995423923040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423923040043

Keywords

Navigation