Skip to main content
Log in

Superconvergence for Optimal Control Problems Governed by Semi-linear Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we will investigate the superconvergence of the finite element approximation for quadratic optimal control problem governed by semi-linear elliptic equations. The state and co-state variables are approximated by the piecewise linear functions and the control variable is approximated by the piecewise constant functions. We derive the superconvergence properties for both the control variable and the state variables. Finally, some numerical examples are given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W.: On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alt, W., Machenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arada, N., Casas, E., Troltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Casas, E., Troltzsch, F.: Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. 13, 406–431 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas, E., Troltzsch, F., Unger, A.: Second order sufficient optimality conditions for some state constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38, 1369–1391 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Y.: Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int. J. Numer. Methods Eng. 75, 881–898 (2008)

    Article  Google Scholar 

  7. Chen, Y.: Superconvergence of optimal control problems by rectangular mixed finite element methods. Math. Comput. 77, 1269–1291 (2008)

    Article  Google Scholar 

  8. Chen, Y., Liu, W.B.: A posteriori error estimates for mixed finite elements of a quadratic control problem. In: Recent Progress in Computational and Applied PDEs, pp. 123–134. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  9. Chen, Y., Liu, W.B.: Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int. J. Numer. Anal. Model. 3, 311–321 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Chen, Y., Liu, W.B.: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 211, 76–89 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Y., Yi, N., Liu, W.B.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46, 2254–2275 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  13. Duvaut, G., Lions, J.L.: The Inequalities in Mechanics and Physics. Springer, Berlin (1973)

    Google Scholar 

  14. French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–315 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1989)

    Google Scholar 

  16. Hou, L., Turner, J.C.: Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71, 289–315 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Huang, Y., Li, R., Liu, W.B., Yan, N.: Adaptive multi-mesh finite element approximation for constrained optimal control problems. SIAM J. Control Optim. (in press)

  18. Knowles, G.: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, R., Liu, W.B.: http://circus.math.pku.edu.cn/AFEPack

  20. Li, R., Liu, W.B., Yan, N.N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33, 155–182 (2007)

    Article  MathSciNet  Google Scholar 

  21. Lin, Q., Zhu, Q.D.: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific and Technical Publishers, China (1994)

    Google Scholar 

  22. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  23. Liu, W.B., Tiba, D.: Error estimates for the finite element approximation of a class of nonlinear optimal control problems. J. Numer. Funct. Optim. 22, 953–972 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mateos, M.: Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobe el gradiente del estado. Thesis, University of Cantabria, Santander (June 2000)

  26. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 970–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Dekker, New York (1994)

    Google Scholar 

  28. Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyvaskyla Press, Jyvaskyla (1995)

    Google Scholar 

  29. Xing, X., Chen, Y.: Error estimates of mixed methods for optimal control problems governed by parabolic equations. Int. J. Numer. Methods Eng. 75, 735–754 (2008)

    Article  MathSciNet  Google Scholar 

  30. Xing, X., Chen, Y.: L -error estimates for general optimal control problem by mixed finite element methods. Int. J. Numer. Anal. Model. 5(3), 441–456 (2008)

    MATH  MathSciNet  Google Scholar 

  31. Yang, D., Chang, Y., Liu, W.: A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J. Comput. Math. 26, 471–487 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

This work is supported by National Science Foundation of China, the National Basic Research Program under the Grant 2005CB321703, Scientific Research Fund of Hunan Provincial Education Department, and Hunan Provincial Innovation Foundation for Postgraduate (No. S2008yjscx04).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Dai, Y. Superconvergence for Optimal Control Problems Governed by Semi-linear Elliptic Equations. J Sci Comput 39, 206–221 (2009). https://doi.org/10.1007/s10915-008-9258-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9258-9

Keywords

Navigation