Skip to main content
Log in

Current State of the Problem of Adhesive Interaction Estimation Using Thermodynamic Characteristics

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

We present a review and analysis of publications focused on the scientific prediction of adhesive interaction using the thermodynamic characteristics of the joined surfaces. The main theoretical characteristic of the adhesion of two different phases is the thermodynamic work of adhesion. This value can be measured by wetting methods in the presence of a liquid phase or by calculations. The main disadvantage in establishing the correlation is the very approximate agreement between the theoretical and experimental values of the adhesive strength. Methods for calculating the work of adhesion using quantum-chemical simulation and modeling of molecular dynamics are now widely used. We propose an original method for determining the work of adhesion for polymer–metal joints, which makes it possible to establish a correlation with the adhesive interaction value, which, in turn, is estimated by the cathodic-disbondment method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. App. Polym. Sci. 13, 1741–1747 (1969).

    Article  CAS  Google Scholar 

  2. C. J. Van Oss, R. J. Good, and M. K. Chaudhury, “Additive and nonadditive surface tension components and the interpretation of contact angles,” Langmuir 4, 884–891 (1988).

    Article  CAS  Google Scholar 

  3. C. J. Van Oss, M. K. Chaudhury, and R. J. Good, “Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems,” Chem. Rev. 88, 927–941 (1988).

    Article  CAS  Google Scholar 

  4. R. J. Good, M. K. Chaudhury, and C. J. Van Oss, “Theory of Adhesive Forces Across Interfaces,” in Fundamentals of Adhesion, Ed. by L. H. Lee (Springer, Boston, MA, 1991), pp. 153–172.

    Google Scholar 

  5. C. Maierhofer, H.-W. Reinhardt, and G. Dobmann, Non-Destructive Evaluation of Reinforced Concrete Structures, Vol. 2 Nondestructive Testing Methods (CRC Press, Boca Raton, 2010).

  6. E. Kraus, S. Kremling, B. Baudrit, et al., “Reflection time domain terahertz system for testing polymeric connections,” Polym. Res. J. 9, 345–353 (2015).

    Google Scholar 

  7. S. Horlemann, E. Kraus, B. Baudrit, et al., In-Situ testing of bonded polymer joints by means of computed tomography,” KGK rubberpoint 68, 28–32 (2015).

  8. I. A. Starostina, M. V. Kolpakova, and O. V. Stoyanov, “An estimation of adhesive interaction of polymer coatings with metals using the van Oss–Chaudhury–Good equation,” Polym. Sci., Ser. D 14, 8–12 (2021)

    CAS  Google Scholar 

  9. I. A. Starostina, M. V. Kolpakova, and O. V. Stoyanov, “An estimation of adhesive interaction of polymer coatings with metals using the Owens-Wendt equation,” Vest. Tekhnolog. Univ. 22, 25–28 (2019).

    Google Scholar 

  10. H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene,” J. Colloid Sci., No. 5, 514–531 (1950).

    Article  CAS  Google Scholar 

  11. M. Levine, G. Ilkka, and P. Weiss, “Relation of the critical surface tension of polymers to adhesion,” J. Polym. Sci., Part B 2, 514—531 (1964).

    Google Scholar 

  12. C. A. Dahlquist, “The Significance of Surface Energy in Adhesion,” in Aspects of Adhesion-5, Ed. by D. J. Alner (Univ. London Press, London, 1969), pp. 183–200.

  13. H. M. Scholberg and M. R. Huffield, Adhesion and Adhesives, Fundamentals and Practice (McKay, London, 1952).

    Google Scholar 

  14. D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhesion 1, 102–123 (1969).

    Article  CAS  Google Scholar 

  15. S. J. Muddarris, “Wetting kinetics and the strength of adhesive joints,” J. Adhesion 2, 42–49 (1970).

    Article  Google Scholar 

  16. A. Gent and J. Schultz, “Effect of wetting liquids on the strength of adhesion of viscoelastic material,” J. Adhesion 3, 281–294 (1972).

    Article  CAS  Google Scholar 

  17. L. H. Lee, “Significant Advances and Developments in Adhesion and Adhesives,” in Adhesion Science and Technology, Vol. 9a. Ed. by L. H. Lee (Plenum Press, New York, 1975), p. 129.

  18. D. Maugis, “Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement,” J. Materials Sci. 20, 3041– 3073 (1985).

    Article  CAS  Google Scholar 

  19. F. M. Fowkes, “Role of acid-base interfacial bonding in adhesion,” J. Adhesion Sci. Techn. 1, 2–27 (1987).

    Article  Google Scholar 

  20. F. M. Fowkes, “Quantitative characterization of the acid-base properties of solvents, polymers and inorganic surfaces,” J. Adhesion Sci. Techn. 4, 669–691 (1990).

    Article  CAS  Google Scholar 

  21. M. F. Finlayson and B. A. Shah, “The influence of surface acidity and basicity on adhesion of poly(ethylene-co-acrylic acid) to aluminium,” J. Adhesion Sci. Techn. 4, 431–439 (1990).

    Article  CAS  Google Scholar 

  22. B. R. Leggat, S. A. Taylor, and S. R. Taylor, “Adhesion of epoxy to hydrotalcite conversion coatings: I. Correlation with wettability and electrokinetic measurements,” Colloids Surf., A 210, 69–81 (2002).

    Article  CAS  Google Scholar 

  23. E. J. Berger, “A method of determining the surface acidity of polymeric and metallic materials and its application to lap shear adhesion” J. Adhesion Sci. Techn. 4, 373–391 (1990).

    Article  CAS  Google Scholar 

  24. P. E. Luner and E. Oh, “Characterization of the Surface Free Energy of Cellulose Ether Films,” Colloids Surf., A 181, 31–48 (2001).

    Article  CAS  Google Scholar 

  25. E. McCafferty, “Acid-base effects in polymer adhesion at metal surfaces,” J. Adhesion Sci. Techn. 16, 239–255 (2002).

    Article  CAS  Google Scholar 

  26. A. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman & Hall; 1987; Mir, Moscow, 1991).

  27. Y. G. Bogdanova, V. D. Dolzhikova, I. M. Karzov, et al., “Prediction of Polymer Composites Strength Properties,” in Handbook of Research on Nanomaterials, Nanochemistry and Smart Materials (2012), pp. 177–186.

    Google Scholar 

  28. V. Yu. Traskin, “An estimation of the adhesive strength to tear and wear in the liquid adhesion work to a body.” Vestnik Mosk. Univ., Ser. 2 Chemistry 45, 376—381 (2004).

    CAS  Google Scholar 

  29. D. V. Kramarev, V. S. Osipchik, N. M. Chalaya, et al., “Studies of interphase phenomena on the fiber—binder interface in imdidoorganoplastics,” Plast. Massy, No. 7, 3–6 (2017).

    Google Scholar 

  30. S. Kisin, J. Božović Vukić, P. G. Th. J. van der Varst, et al. “Estimating the polymer-metal work of adhesion from molecular dynamics simulations,” Chem. Mater. 19, 903–907 (2007).

    Article  CAS  Google Scholar 

  31. K. Anand, Th. Duguet, J. Esvan, et al., “Chemical interactions at the Al/poly-epoxy interface rationalized by DFT calculations and a comparative XPS analysis,” ACS Appl. Mater. Interfaces 12, 57649–57665 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. T. Semoto, Y. Tsuji, and K. Yoshizawa, “Molecular understanding of the adhesive force between a metal oxide surface and an epoxy resin,” J. Phys. Chem. 11, 11701–11708 (2011).

    Google Scholar 

  33. A. Anastassiou and V. G. Mavrantzas, “Molecular structure and work of adhesion of poly(N-butyl acrylate) and poly(N-butyl acrylate-co-acrylic acid) on α-quartz, α-ferric oxide, and α-ferrite from detailed molecular dynamics simulations,” Macromolecules 48, 8262–8284 (2015).

    Article  CAS  Google Scholar 

  34. G. Bahlakeh, B. Ramezanzadeh, M. R. Saeb, et al., “Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods,” Appl. Surf. Sci. 419, 650–669 (2017).

    Article  CAS  Google Scholar 

  35. I. A. Starostina, N. V. Sokorova, O. V. Stoyanov, et al., “The correspondence of detachment characteristics and acid-base interactions measures,” Polym. Sci., Ser. D 6, 154–156 (2013).

    CAS  Google Scholar 

  36. I. A. Starostina, M. V. Kolpakova, and O. V. Stoyanov, “An estimation of adhesive interaction of polymer coatings with metals using the Van Oss-Chaudhury-Good equation,” Polym. Sci., Ser. D 14, 8–12 (2021).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Stoyanov.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starostina, I.A., Ulitin, N.V. & Stoyanov, O.V. Current State of the Problem of Adhesive Interaction Estimation Using Thermodynamic Characteristics. Polym. Sci. Ser. D 15, 354–358 (2022). https://doi.org/10.1134/S1995421222030297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222030297

Keywords:

Navigation