Skip to main content
Log in

Amphiphilic poly-n-vinyl-2-pyrrolidone: Synthesis, properties, nanoparticles

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

Water-soluble amphiphilic polymers based on N-vinyl-2-pyrrolidone (Amph-PVP) have been synthesized. Amphiphilic diblock polymers have been obtained via a single-step technique. For the synthesized amphiphilic polymers, the critical concentrations of mycelium formation (CCM) have been determined. The structure of the polymers obtained was confirmed by IR and NMR spectroscopy. The critical concentration of micelle formation (CCM) for the synthesized polymers has been found to be in the micromolar range. The fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) was chosen as a model substance for the synthesis of nanoparticles. Micellar particles were obtained via an ultrasonic technique followed by evaporation of the organic solvent (emulsion method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kopecek, “Smart and genetically engineered biomaterials and drug delivery systems,” Eur. J. Pharm. Sci. 20 (1), 1–16 (2003).

    Article  CAS  Google Scholar 

  2. V. P. Torchilin, “Multifunctional nanocarriers,” Adv. Drug Delivery Rev. 58 (14), 1532–55 (2006).

    Article  CAS  Google Scholar 

  3. F. Feng, H. Wang, L. Han, and S. Wang, J. Am. Chem. Soc. 130, 11338–11343 (2008).

    Article  CAS  Google Scholar 

  4. P. Blasi, S. Giovagnoli, A. Schoubben, et al., “Solid lipid nanoparticles for targeted brain drug delivery,” Adv. Drug Delivery Rev. 59 (6), 454–77 (2007).

    Article  CAS  Google Scholar 

  5. S. W. Choi and J. H. Kim, “Design of surface-modified poly(d, l-lactideco-glycolide) nanoparticles for targeted drug delivery to bone,” J. Control Release 122 (1), 24–30 (2007).

    Article  CAS  Google Scholar 

  6. R. Singh and J. W. Lillard, “Nanoparticle-based targeted drug delivery,” Exp. Mol. Path 86 (3), 215–23 (2009).

    Article  CAS  Google Scholar 

  7. L. Zhang, F. Gu, J. Chan, et al., “Nanoparticles in medicine: Therapeutic applications and developments,” Clin. Pharmacol. Ther. 83 (5), 761–769 (2008).

    Article  CAS  Google Scholar 

  8. H. C. Shin, A. Alani, D. A. Rao, et al., “Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs,” J. Control Release 140 (3), 294–300 (2009).

    Article  CAS  Google Scholar 

  9. T. A. Diezi, Y. Bae, and G. S. Kwon, Mol. Pharm. 7, 1355–1360 (2010).

    Article  CAS  Google Scholar 

  10. J. Fang, H. Nakamura, and H. Maeda, “The EPR Effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect,” Adv. Drug Delivery Rev. 63 (3), 136–151 (2011).

    Article  CAS  Google Scholar 

  11. K. M. Huh, S. C. Lee, Y. W. Cho, et al., “Hydrotropic polymer micelle system for delivery of paclitaxel,” J. Control Release 101 (1), 59–68 (2005).

    Article  CAS  Google Scholar 

  12. K. Kataoka, A. Harada, and Y. Nagasaki, “Block copolymer micelles for drug delivery: Design, characterization and biological significance,” Adv. Drug Delivery Rev. 47 (1), 113–131 (2001).

    Article  CAS  Google Scholar 

  13. S. C. Lee, C. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, “Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(e-caprolactone) copolymer as a carrier for paclitaxel,” J. Control Release 89 (3), 437–446 (2003).

    Article  CAS  Google Scholar 

  14. H. M. Aliabadi, A. Mahmud, et al., “Micelles of methoxy poly(ethylene oxide)-b-poly(e-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A,” J. Control Release 104 (2), 301–311 (2005).

    Article  CAS  Google Scholar 

  15. G. H. Hsiue, C. H. Wang, C. L. Lo, et al., “Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery,” Int. J. Pharm. 317 (1), 69–75 (2006).

    Article  CAS  Google Scholar 

  16. J. Wang, L. S. del Rosario, B. Demirdirek, et al., “Comparison of PEG chain length and density on amphiphilic macromolecular nanocarriers: Selfassembled and unimolecular micelles,” Acta Biomater. 5 (3), 69–75 (2009).

    Article  Google Scholar 

  17. T. Zhang, Y. Y. Yu, D. Li, et al., “Synthesis and properties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative,” J. Mater. Sci. Mater. Med. 20 (3), 673–80 (2009).

    Article  CAS  Google Scholar 

  18. Y. S. Nam, H. S. Kang, J. Y. Park, et al., “New micellelike polymer aggregates made from PEI-PLGA diblock copolymers: Micellar characteristics and cellular uptake,” Biomaterials 24 (12), 2053–2059 (2003).

    Article  CAS  Google Scholar 

  19. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, et al., “Novel self-assembled amphiphilic poly(epsiloncaprolactone)-grafted-poly(vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles,” J. Mater. Sci. Mater. Med. 20 (3), 821–831 (2009).

    Article  CAS  Google Scholar 

  20. H. Dreschler, “Indication to prescription of blood and blood substitutes in operative medicine,” Med. Lab. (Stuttg.) 27, 115–121 (1974).

    Google Scholar 

  21. S. A. Kramer, “Effect of povidone-iodine on wound healing: A review,” J. Vasc. Nurs. 17, 17–23 (1999).

    Article  CAS  Google Scholar 

  22. A. N. Kuskov, M. I. Shtilman, A. V. Goryachaya, R. I. Tashmuhamedov, A. A. Yaroslavov, V. P. Torchilin, et al., “Self-assembling nano-scaled drug delivery systems composed of amphiphilic poly-n-vinylpyrrolidones,” J. Non-Cryst Solids 353 (22), 3969–75 (2007).

    Article  CAS  Google Scholar 

  23. A. N. Kuskov, A. L. Villemson, M. I. Shtilman, N. I. Larionova, A. M. Tsatsakis, I. Tsikalas, et al., “Amphiphilic poly-n-vinylpyrrolidone nano-carriers with incorporated model proteins,” J. Phys. Condens. Matter 19 (20), 5139–50 (2007).

    Article  Google Scholar 

  24. Z. Zhang and H. Yin, “Effect of polyoxypropylene chain length on the critical micelle concentration of propylene oxide-ethylene oxide block copolymers,” J. Zhejiang Univ. Sci. 6 (3), 219–221 (2005).

    Article  CAS  Google Scholar 

  25. R. Kumar, R. Tyagi, N. A. Shakil, et al., “Self-assembly of PEG and diester copolymers: Effect of PEG length, linker, concentration and temperature,” J. Polym. Sci. Part A 42 (11), 1523–1528 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P Kulikov.

Additional information

Original Russian Text © P. P Kulikov, A.N. Kuskov, A.V. Goryachaya, A.N. Luss, M.I. Shtil’man, 2017, published in Vse Materialy, 2017, No. 1, pp. 15–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, P.P., Kuskov, A.N., Goryachaya, A.V. et al. Amphiphilic poly-n-vinyl-2-pyrrolidone: Synthesis, properties, nanoparticles. Polym. Sci. Ser. D 10, 263–268 (2017). https://doi.org/10.1134/S199542121703008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542121703008X

Keywords

Navigation