Skip to main content
Log in

Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, we have aimed to produce nanoparticles (NPs) possessing the capability of carrying both of the hydrophobic and hydrophilic drugs and reveal significant release for both drug types. Poly(ε-caprolactone) (PCL) grafted poly(vinyl alcohol) (PVA) copolymer (PCL-g-PVA) has been prepared and shaped in nano-particulate form to be adequate for carrying the drugs. Stannous octoate (Sn(II)Oct2) was used to catalyze PVA and ε-caprolactone monomer to chemically bond. Moreover, this catalyst enhanced side chain polymerization reaction for the utilized ε-caprolactone monomer to form poly(ε-caprolactone) (PCL). The formed PCL was attached as branches with PVA backbone. 1H NMR has confirmed formation of PCL and grafting of PVA by this new polymer. Moreover, the vibration modes in the functional groups of PCL-g-PVA have been detected by FT-IR. The thermal alteration in the grafted polymer was checked by TGA analysis. The successfully synthesized grafted copolymer was able to self-aggregate into NPs by direct dialysis method. The size, morphology and charges associated with the obtained NPs were analyzed by DLS, TEM and ELS, respectively. PCL-g-PVA NPs were investigated as drug carrier models for hydrophobic and hydrophilic anti cancer drugs; paclitaxel and doxorubicin. In vitro drug release experiments were conducted; the loaded NPs reveal continuous and sustained release form for both drugs, up to 20 and 15 days for paclitaxel and doxorubicin, respectively. However, in a case of using pure drugs only, both drugs completely released within 1–2 h. The overall obtained results strongly recommend the use these novel NPs in future drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Kimura, A. Okuno, K. Miyazaki, T. Furuzono, Y. Ohya, T. Ouchi, S. Mutsuo, H. Yoshizawa, Y. Kitamura, T. Fujisato, A. Kishid, Mater. Sci. Eng. C 24, 797 (2004). doi:10.1016/j.msec.2004.08.046

    Article  Google Scholar 

  2. C.H. Kim, M.S. Khil, H.Y. Kim, H.U. Lee, K.Y. Jahng, J. Biomed. Mater. Res. B.: Appl. Biomater. 78, 283 (2006)

    Google Scholar 

  3. C.R. Nuttelman, D.J. Mortisen, S.M. Henry, K.S. Anseth, J. Biomed. Mater. Res. A 57, 217 (2001). doi :10.1002/1097-4636(200111)57:2<217::AID-JBM1161>3.0.CO;2-I

    Article  CAS  Google Scholar 

  4. C.R. Nuttelman, S.M. Henry, K.S. Anseth, Biomaterials 23, 3617 (2002). doi:10.1016/S0142-9612(02)00093-5

    Article  PubMed  CAS  Google Scholar 

  5. M. Qi, Y. Gu, N. Sakata, D. Kim, Y. Shirouzu, C. Yamamoto, A. Hiura, S. Sumi, K. Inoue, Biomaterials 25, 5885 (2004). doi:10.1016/j.biomaterials.2004.01.050

    Article  PubMed  CAS  Google Scholar 

  6. M.K. Lindemann, Encyclopedia of Polymer Science and Engineering, vol. 14 (Wiley, New York, 1971), p. 149

    Google Scholar 

  7. A. Breitenbach, T. Kissel, Polymer (Guildf) 39, 3261 (1998). doi:10.1016/S0032-3861(97)10077-5

    Article  CAS  Google Scholar 

  8. Z. Gan, J.T. Fung, X. Jing, C. Wu, W.K. Kuliche, Polymer (Guildf) 40, 1961 (1999). doi:10.1016/S0032-3861(98)00414-5

    Article  CAS  Google Scholar 

  9. I.D. Armani, C.S. Liu, J. Micromech. Microeng. 10, 80 (2000). doi:10.1088/0960-1317/10/1/311

    Article  ADS  CAS  Google Scholar 

  10. I. Ydens, D. Rutot, P. Degee, J.L. Six, E. Dellacherie, P. Dubois, Macromolecules 33, 6713 (2000). doi:10.1021/ma0002803

    Article  CAS  Google Scholar 

  11. M.P. Bajgai, S. Aryal, S.R. Bhattarai, K.C. Remant, K.W. Kim, H.Y. Kim, J. Appl. Polym. Sci. 108, 1447 (2008). doi:10.1002/app.27825

    Article  CAS  Google Scholar 

  12. P. Prabu, A.A. Chaudhari, S. Aryal, N. Dharmaraj, S.Y. Park, W.D. Kim, H.Y. Kim, J. Mater. Sci: Mater. Med. 19, 2157 (2008). doi:10.1007/s10856-007-3307-z

    Article  CAS  Google Scholar 

  13. K. Aoi, H. Aoi, M. Okada, Macromol. Chem. Phys. 203, 1018 (2002). doi :10.1002/1521-3935(20020401)203:7<1018::AID-MACP1018>3.0.CO;2-9

    Article  CAS  Google Scholar 

  14. S. Aryal, K.C.R. Bahadur, N. Bhattarai, B.M. Lee, H.Y. Kim, Mater. Chem. Phys. 98, 463 (2006). doi:10.1016/j.matchemphys.2005.09.082

    Article  CAS  Google Scholar 

  15. K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Deliv. Rev. 47, 113 (2001). doi:10.1016/S0169-409X(00)00124-1

    Article  PubMed  CAS  Google Scholar 

  16. A.L. Villemson, P. Couvreur, R. Gref, N.I. Larionova, Polym. Sci. Ser. A 49, 708 (2007). doi:10.1134/S0965545X07060120

    Article  Google Scholar 

  17. M. Lee, Y.W. Cho, J.H. Park, H. Chung, S.Y. Jeong, K. Choi, D.H. Moon, S.Y. Kim, I.S. Kim, I.C. Kwon, Colloid Polym. Sci. 284, 506 (2006). doi:10.1007/s00396-005-1413-3

    Article  CAS  Google Scholar 

  18. J.R.M. Carthy, J.M. Perez, C. Bruckner, R. Weissleder, Nano Lett. 5, 2552 (2005). doi:10.1021/nl0519229

    Article  Google Scholar 

  19. K.S. Soppimath, T.M. Aminabhavi, A. Kulkarni, W.E. Rudzinski, J. Control Release 70, 1 (2001). doi:10.1016/S0168-3659(00)00339-4

    Article  PubMed  CAS  Google Scholar 

  20. L. Mu, S.S. Feng, J. Control Release 80, 129 (2002). doi:10.1016/S0168-3659(02)00025-1

    Article  PubMed  CAS  Google Scholar 

  21. R. Savic, L. Luo, A. Eisenberg, D. Maysinger, Science 300, 615 (2003). doi:10.1126/science.1078192

    Article  PubMed  ADS  CAS  Google Scholar 

  22. G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, C. Leroux, J. Control Release 109, 169 (2005). doi:10.1016/j.jconrel.2005.09.034

    Article  PubMed  CAS  Google Scholar 

  23. S. Chunhua, G. Shengrong, L. Chengfei, Polym. Degrad Stab. 92, 1891 (2007). doi:10.1016/j.polymdegradstab.2007.06.012

    Article  Google Scholar 

  24. I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 63 (2002). doi:10.1016/S0169-409X(02)00044-3

    Article  Google Scholar 

  25. N. Bhattarai, H.Y. Kim, D.I. Cha, D.R. Lee, D.I. Yoo, Eur. Polym. J. 39, 1365 (2003). doi:10.1016/S0014-3057(02)00389-0

    Article  CAS  Google Scholar 

  26. B.C. Thanoo, M.C. Sunny, A. Jayakrishnan, J. Pharm. Pharmacol. 45, 16 (1993)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Korean Research Foundation Grant founded by Korean Government (MOEHRD) (The Center for Health Care Technology, Chonbuk National University, Jeonju 561–756 Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh, F.A., Barakat, N.A.M., Kanjwal, M.A. et al. Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci: Mater Med 20, 821–831 (2009). https://doi.org/10.1007/s10856-008-3637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3637-5

Keywords

Navigation