Skip to main content
Log in

Promising Approaches for Determination of Copper Ions in Biological Systems

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this review, we present and categorize modern analytical methods for quantitative determination of copper mostly aimed at the possibility or prospect of their use in biological systems. We perform a comparative analysis of spectroscopic, electrochemical, and fluorescent methods on the basis of key criteria such as limit of detection, the possibility for in vivo/in vitro application, and the possibility of dynamic real-time measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. Lewińska-Preis, M. Jabłońska, M. Fabiańska, and A. Kita, Environ. Geochem. Health 33, 595 (2011). https://doi.org/10.1007/s10653-011-9373-7

    Article  CAS  Google Scholar 

  2. M. S. Willis, S. A. Monaghan, M. L. Miller, et al., Am. J. Clin. Pathol. 123, 125 (2005). https://doi.org/10.1309/V6GVYW2QTYD5C5PJ

    Article  Google Scholar 

  3. C. Minoia, E. Sabbioni, P. Apostoli, et al., Sci. Total Environ. 95, 89 (1990). https://doi.org/10.1016/0048-9697(90)90055-Y

    Article  CAS  Google Scholar 

  4. J. Osredkar and N. Sustar, J. Clin. Toxicol. 3, 2161 (2011). https://doi.org/10.4172/2161-0495.S3-001

    Article  Google Scholar 

  5. M. C. Linder, L. Wooten, P. Cerveza, et al., Am. J. Clin. Nutr. 67, 965S (1998). https://doi.org/10.1093/ajcn/67.5.965S

    Article  CAS  Google Scholar 

  6. E. D. Harris, Nutr. Rev. 59, 281 (2001). https://doi.org/10.1111/j.1753-4887.2001.tb07017.x

    Article  CAS  Google Scholar 

  7. P. T. Bhattacharya, S. R. Misra, and M. Hussain, Scientifica (Cairo) 2016, 1 (2016). https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  8. M. Araya, F. Pizarro, M. Olivares, et al., Biol. Res. 39, 183 (2006). https://doi.org/10.4067/S0716-97602006000100020

    Article  CAS  Google Scholar 

  9. C. D. Davis, J. Nutr. 133, 522 (2003). https://doi.org/10.1093/jn/133.2.522

    Article  CAS  Google Scholar 

  10. Y. Christen, Am. J. Clin. Nutr. 71, 621S (2000). https://doi.org/10.1093/ajcn/71.2.621s

    Article  CAS  Google Scholar 

  11. J. T. Rubino and K. J. Franz, J. Inorg. Biochem. 107, 129 (2012). https://doi.org/10.1016/j.jinorgbio.2011.11.024

    Article  CAS  Google Scholar 

  12. F. Tisato, C. Marzano, M. Porchia, et al., Med. Res. Rev. 30, 708 (2009). https://doi.org/10.1002/med.20174

    Article  CAS  Google Scholar 

  13. F. Haber and J. Weiss, Proc. R. Soc. London, Ser. A 147, 332 (1934). https://doi.org/10.1098/rspa.1934.0221

    Article  CAS  Google Scholar 

  14. M. Valko, D. Leibfritz, J. Moncol, et al., Int. J. Biochem. Cell. Biol. 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  15. A. U. Khan and M. Kasha, Proc. Natl. Acad. Sci. U. S. A. 91, 12365 (1994). https://doi.org/10.1073/pnas.91.26.12365

    Article  CAS  Google Scholar 

  16. H. Sies, Exp. Physiol. 82, 291 (1997). https://doi.org/10.1113/expphysiol.1997.sp004024

    Article  CAS  Google Scholar 

  17. F. Tisato, C. Marzano, M. Porchia, et al., Med. Res. Rev., No. 4, 708 (2009). https://doi.org/10.1002/med.20174

  18. A. Gupte and R. Mumper, Cancer Treat. Rev. 35, 32 (2009). https://doi.org/10.1016/j.ctrv.2008.07.004

    Article  CAS  Google Scholar 

  19. M. Pavelková, J. Vysloužil, K. Kubová, and D. Vetchý, Ces. Slov. Farm. 2018, 143 (2018).

    Google Scholar 

  20. E. A. Roberts, Medicine (Baltimore) 39, 602 (2011). https://doi.org/10.1016/j.mpmed.2011.08.006

    Article  Google Scholar 

  21. P. C. Bull, G. R. Thomas, J. M. Rommens, et al., Nat. Genet. 5, 327 (1993). https://doi.org/10.1038/ng1293-327

    Article  CAS  Google Scholar 

  22. I. Scheinberg, Major Probl. Int. Med. 23, 9 (1984).

    Google Scholar 

  23. I. F. Scheiber, J. F. B. Mercer, and R. Dringen, Prog. Neurobiol. 116, 33 (2014). https://doi.org/10.1016/j.pneurobio.2014.01.002

    Article  CAS  Google Scholar 

  24. M. Fenu, M. Liggi, E. Demelia, et al., Eur. J. Int. Med. 23, e150 (2012). https://doi.org/10.1016/j.ejim.2012.04.005

    Article  CAS  Google Scholar 

  25. S. Datar and E. F. M. Wijdicks, Handbook Clin. Neurol. 120, 645 (2014). https://doi.org/10.1016/B978-0-7020-4087-0.00044-9

    Article  Google Scholar 

  26. M. Lenartowicz, R. R. Starzynski, A. Jonczy, et al., Biochim. Biophys. Acta 1863, 1410 (2017). https://doi.org/10.1016/j.bbadis.2017.02.020

    Article  CAS  Google Scholar 

  27. C. M. Galhardi, Y. S. Diniz, L. A. Faine, et al., Food Chem. Toxicol. 42, 2053 (2004). https://doi.org/10.1016/j.fct.2004.07.020

    Article  CAS  Google Scholar 

  28. D. Strausak, J. F. Mercer, H. H. Dieter, et al., Brain Res. Bull. 55, 175 (2001). https://doi.org/10.1016/S0361-9230(01)00454-3

    Article  CAS  Google Scholar 

  29. M. DiDonato and B. Sarkar, Biochim. Biophys. Acta 1360, 3 (1997). https://doi.org/10.1016/S0925-4439(96)00064-6

    Article  CAS  Google Scholar 

  30. A. G. Majouga, M. I. Zvereva, M. P. Rubtsova, et al., J. Med. Chem. 57, 6252 (2014). https://doi.org/10.1021/jm500154f

    Article  CAS  Google Scholar 

  31. J. Ceramella, A. Mariconda, D. Iacopetta, et al., Bioorg. Med. Chem. Lett. 30, 126905 (2020). https://doi.org/10.1016/j.bmcl.2019.126905

    Article  CAS  Google Scholar 

  32. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Apoptosis 5, 415 (2000). https://doi.org/10.1023/A:1009616228304

    Article  CAS  Google Scholar 

  33. Q. Tian, M. Tang, Y. Sun, et al., Adv. Mater. 23, 3542 (2011). https://doi.org/10.1002/adma.201101295

    Article  CAS  Google Scholar 

  34. Y. Li, W. Lu, Q. Huang, et al., Nanomedicine 5, 1161 (2010). https://doi.org/10.2217/nnm.10.85

    Article  CAS  Google Scholar 

  35. M. Zhou, R. Zhang, M. Huang, et al., J. Am. Chem. Soc. 132, 15351 (2010). https://doi.org/10.1021/ja106855m

    Article  CAS  Google Scholar 

  36. S. Goel, F. Chen, and W. Cai, Small 10, 631 (2014). https://doi.org/10.1002/smll.201301174

    Article  CAS  Google Scholar 

  37. X. Huang, C. Xu, Y. Li, et al., Mater. Sci. Eng. C 96, 129 (2019). https://doi.org/10.1016/j.msec.2018.10.062

    Article  CAS  Google Scholar 

  38. Y. Yang, J. Clin. Invest. 125, 3335 (2015). https://doi.org/10.1172/JCI83871

    Article  Google Scholar 

  39. A. Lee, S. Sun, A. Sandler, and T. Hoang, Curr. Opin. Chem. Biol. 44, 56 (2018). https://doi.org/10.1016/j.cbpa.2018.05.006

    Article  CAS  Google Scholar 

  40. P. Zhou, J. Qin, C. Zhou, et al., Biomaterials 195, 86 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.007

    Article  CAS  Google Scholar 

  41. V. K. Leont’ev, I. P. Pogorel’skii, G. A. Frolov, et al., Nanotechnol. Russ. 13, 195 (2018). https://doi.org/10.1134/S1995078018020040

    Article  Google Scholar 

  42. I. A. Mamonova, M. D. Matasov, I. V. Babushkina, et al., Nanotechnol. Russ. 8, 303 (2013). https://doi.org/10.1134/S1995078013030142

    Article  Google Scholar 

  43. A. P. Ingle, N. Duran, and M. Rai, Appl. Microbiol. Biotechnol. 98, 1001 (2014). https://doi.org/10.1007/s00253-013-5422-8

    Article  CAS  Google Scholar 

  44. A. Mokhtar, A. Djelad, A. Bengueddach, and M. Sassi, Int. J. Biol. Macromol. 118, 2149 (2018). https://doi.org/10.1016/j.ijbiomac.2018.07.058

    Article  CAS  Google Scholar 

  45. S. Rajeshkumar and G. Rinitha, Open Nano 3, 18 (2018). https://doi.org/10.1016/j.onano.2018.03.001

    Article  Google Scholar 

  46. T. Litwin, G. Gromadzka, G. M. Szpak, et al., J. Neurol. Sci. 329, 55 (2013). https://doi.org/10.1016/j.jns.2013.03.021

    Article  CAS  Google Scholar 

  47. M. Colon, J. L. Todolí, M. Hidalgo, and M. Iglesias, Anal. Chim. Acta 609, 160 (2008). https://doi.org/10.1016/j.aca.2008.01.001

    Article  CAS  Google Scholar 

  48. S. J. Hill and A. S. Fisher, Encyclopedia of Spectroscopy and Spectrometry (Elsevier, 2017). https://doi.org/10.1016/B978-0-12-803224-4.00099-6

  49. A. R. White, R. Reyes, J. F. Mercer, et al., Brain Res. 842, 439 (1999). https://doi.org/10.1016/S0006-8993(99)01861-2

    Article  CAS  Google Scholar 

  50. A. Giese, M. Buchholz, J. Herms, and H. A. Kretzschmar, J. Mol. Neurosci. 27, 347 (2005). https://doi.org/10.1385/JMN:27:3:347

    Article  CAS  Google Scholar 

  51. J. P. Goullé, L. Mahieu, J. Castermant, et al., Forensic Sci. Int. 153, 39 (2005). https://doi.org/10.1016/j.forsciint.2005.04.020

    Article  CAS  Google Scholar 

  52. S. Hasegawa, M. Koshikawa, I. Takahashi, et al., J. Trace Elem. Med. Biol. 22, 248 (2008). https://doi.org/10.1016/j.jtemb.2008.05.001

    Article  CAS  Google Scholar 

  53. L. C. Jones, J. L. Beard, and B. C. Jones, Hippocampus 18, 398 (2008). https://doi.org/10.1002/hipo.20399

    Article  CAS  Google Scholar 

  54. R. Rahil-Khazen, B. J. Bolann, A. Myking, and R. J. Ulvik, J. Trace Elem. Med. Biol. 16, 15 (2002). https://doi.org/10.1016/S0946-672X(02)80004-9

    Article  CAS  Google Scholar 

  55. U. Lindh, E. Johansson, and L. Gille, Nucl. Instrum. Methods Phys. Res., Sect. B 3, 631 (1984). https://doi.org/10.1016/0168-583X(84)90451-8

    Article  Google Scholar 

  56. Y. Cao, J. Feng, L. Tang, et al., Talanta 206, 120174 (2020). https://doi.org/10.1016/j.talanta.2019.120174

    Article  CAS  Google Scholar 

  57. N. Szoboszlai, A. Réti, B. Budai, et al., Spectrochim. Acta, B 63, 1480 (2008). https://doi.org/10.1016/j.sab.2008.10.025

    Article  CAS  Google Scholar 

  58. J. Jeffery, A. R. Frank, S. Hockridge, et al., Ann. Clin. Biochem. Int. J. Lab. Med. 56, 170 (2019). https://doi.org/10.1177/0004563218793163

    Article  CAS  Google Scholar 

  59. A. M. Kim, S. Vogt, T. V. O’Halloran, and T. K. Woodruff, Nat. Chem. Biol. 6, 674 (2010). https://doi.org/10.1038/nchembio.419

    Article  CAS  Google Scholar 

  60. D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, Chem. Soc. Rev. 46, 3945 (2017). https://doi.org/10.1039/C7CS00172J

    Article  CAS  Google Scholar 

  61. J. H. Lee, B. C. Kim, O. Byeung-Keun, and J. W. Choi, J. Biomed. Nanotechnol. 11, 2223 (2015). https://doi.org/10.1166/jbn.2015.2117

    Article  CAS  Google Scholar 

  62. M. Avella-Oliver, R. Puchades, S. Wachsmann-Hogiu, and A. Maquieira, Sens. Actuators, B 252, 657 (2017). https://doi.org/10.1016/j.snb.2017.06.058

    Article  CAS  Google Scholar 

  63. Y. Wang, Z. Su, L. Wang, et al., Anal. Chem. 89, 6392 (2017). https://doi.org/10.1021/acs.analchem.6b05106

    Article  CAS  Google Scholar 

  64. V. Dugžić, S. Kupfer, M. Jahn, et al., Sens. Actuators, B 279, 230 (2019). https://doi.org/10.1016/j.snb.2018.09.098

    Article  CAS  Google Scholar 

  65. P. V. Gorelkin, G. A. Kiselev, D. S. Mukhin, et al., Polym. Sci., Ser. A 52, 1023 (2010). https://doi.org/10.1134/S0965545X10100044

    Article  Google Scholar 

  66. P. V. Gorelkin, A. S. Erofeev, G. A. Kiselev, et al., A-nalyst 140, 6131 (2015). https://doi.org/10.1039/C5AN01102G

    Article  CAS  Google Scholar 

  67. E. K. Beloglazkina, A. G. Majouga, N. V. Zyk, et al., Thin Solid Films 515, 4649 (2007). https://doi.org/10.1016/j.tsf.2006.12.131

    Article  CAS  Google Scholar 

  68. G. Wu, H. Ji, K. Hansen, et al., Proc. Natl. Acad. Sci. U. S. A. 98, 1560 (2001). https://doi.org/10.1073/pnas.98.4.1560

    Article  CAS  Google Scholar 

  69. R. Peng, L. Xing, X. Wang, et al., Anal. Sci. 32, 1065 (2016). https://doi.org/10.2116/analsci.32.1065

    Article  CAS  Google Scholar 

  70. Y. Du and S. Dong, Anal. Chem. 89, 189 (2017). https://doi.org/10.1021/acs.analchem.6b04190

    Article  CAS  Google Scholar 

  71. A. F. Bange, G. M. Brown, L. R. Senesac, and T. Thun-dat, Surf. Sci. 603, L125 (2009). https://doi.org/10.1016/j.susc.2009.09.009

    Article  CAS  Google Scholar 

  72. X. Xu, N. Zhang, G. M. Brown, et al., Appl. Biochem. Biotechnol. 183, 555 (2010). https://doi.org/10.1007/s12010-017-2511-7

    Article  CAS  Google Scholar 

  73. H. Zhao, C. Xue, T. Nan, et al., Anal. Chim. Acta 676, 81 (2010). https://doi.org/10.1016/j.aca.2010.07.041

    Article  CAS  Google Scholar 

  74. M. Taniguchi and T. Kawai, Appl. Phys. Lett. 85, 3298 (2004). https://doi.org/10.1063/1.1801167

    Article  CAS  Google Scholar 

  75. T. G. Bäcklund, H. G. O. Sandberg, R. Österbacka, and H. Stubb, Appl. Phys. Lett. 85, 3887 (2004). https://doi.org/10.1063/1.1811798

    Article  CAS  Google Scholar 

  76. M. J. Panzer and C. D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006). https://doi.org/10.1002/adfm.200600111

    Article  CAS  Google Scholar 

  77. T. T. K. Nguyen, H. V. Tran, T. T. Vu, et al., Biosens. Bioelectron. 127, 118 (2019). https://doi.org/10.1016/j.bios.2018.12.005

    Article  CAS  Google Scholar 

  78. L. Kergoat, L. Herlogsson, B. Piro, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 8394 (2012). https://doi.org/10.1073/pnas.1120311109

    Article  Google Scholar 

  79. J. Chen, Y. Li, K. Lv, et al., Sens. Actuators, B 224, 298 (2016). https://doi.org/10.1016/j.snb.2015.10.046

    Article  CAS  Google Scholar 

  80. J. Fan, P. Zhan, M. Hu, et al., Org. Lett. 15, 492 (2013). https://doi.org/10.1021/ol3032889

    Article  CAS  Google Scholar 

  81. S. Upadhyay, A. Singh, R. Sinha, et al., J. Mol. Struct. 1193, 89 (2019). https://doi.org/10.1016/j.molstruc.2019.05.007

    Article  CAS  Google Scholar 

  82. M. Li, X. Huang, and H. Yu, Mater. Sci. Eng. C 101, 614 (2019). https://doi.org/10.1016/j.msec.2019.04.022

    Article  CAS  Google Scholar 

  83. L. Guo, Y. Xu, A. R. Ferhan, et al., J. Am. Chem. Soc. 135, 12338 (2013). https://doi.org/10.1021/ja405371g

    Article  CAS  Google Scholar 

  84. Y. Yaling and H. Yi, Anal. Sci. 35, 159 (2019). https://doi.org/10.2116/analsci.18P345

    Article  Google Scholar 

  85. S. Feng, Q. Gao, X. Gao, et al., Inorg. Chem. Commun. 102, 51 (2019). https://doi.org/10.1016/j.inoche.2019.01.012

    Article  CAS  Google Scholar 

  86. X. Xue, H. Fang, H. Chen, et al., Dyes Pigm. 130, 116 (2016). https://doi.org/10.1016/j.dyepig.2016.03.017

    Article  CAS  Google Scholar 

  87. Z. Xu, H. Wang, Z. Chen, et al., Spectrochim. Acta, A 216, 404 (2019). https://doi.org/10.1016/j.saa.2019.03.062

    Article  CAS  Google Scholar 

  88. K. C. Ko, J. S. Wu, H. J. Kim, et al., Chem. Commun. 47, 3165 (2011). https://doi.org/10.1039/C0CC05421F

    Article  CAS  Google Scholar 

  89. H. S. Jung, P. S. Kwon, J. W. Lee, et al., J. Am. Chem. Soc. 131, 2008 (2009). https://doi.org/10.1021/ja808611d

    Article  CAS  Google Scholar 

  90. K. P. Carter, A. M. Young, and A. E. Palmer, Chem. Rev. 114, 4564 (2014). https://doi.org/10.1021/cr400546e

    Article  CAS  Google Scholar 

  91. D. W. Domaille, E. L. Que, and C. J. Chang, Nat. Chem. Biol. 4, 168 (2008). https://doi.org/10.1038/nchembio.69

    Article  CAS  Google Scholar 

  92. C. E. McGhee, K. Y. Loh, and Y. Lu, Curr. Opin. Biotechnol. 45, 191 (2017). https://doi.org/10.1016/j.copbio.2017.03.002

    Article  CAS  Google Scholar 

  93. J. Liang, L. Guo, Y. Ding, et al., Biochem. Biophys. Res. Commun. 443, 894 (2014). https://doi.org/10.1016/j.bbrc.2013.12.101

    Article  CAS  Google Scholar 

  94. Z. Hao, R. Zhu, and P. R. Chen, Curr. Opin. Chem. Biol. 43, 87 (2018). https://doi.org/10.1016/j.cbpa.2017.12.002

    Article  CAS  Google Scholar 

  95. C. Hao, Y. Li, B. Fan, et al., Microchem. J. 154, 104658 (2020). https://doi.org/10.1016/j.microc.2020.104658

    Article  CAS  Google Scholar 

  96. N. Zhang, Y. Si, Z. Sun, et al., Anal. Chem. 86, 11714 (2014). https://doi.org/10.1021/ac503102g

    Article  CAS  Google Scholar 

  97. Q. Luo, K. R. Bi, Y. Dong, et al., Spectrochim. Acta, A 214, 146 (2019). https://doi.org/10.1016/j.saa.2019.02.013

    Article  CAS  Google Scholar 

  98. X. Zhao, C. Gao, N. Li, et al., Tetrahedron Lett. 60, 1452 (2019). https://doi.org/10.1016/j.tetlet.2019.04.049

    Article  CAS  Google Scholar 

  99. K. Tiwari, S. Kumar, V. Kumar, et al., Spectrochim. Acta, A 191, 16 (2018). https://doi.org/10.1016/j.saa.2017.09.072

    Article  CAS  Google Scholar 

  100. L. F. Wei, C. Y. Chen, C. K. Lai, et al., Methods 168, 18 (2019). https://doi.org/10.1016/j.ymeth.2019.04.023

    Article  CAS  Google Scholar 

  101. P. Wang, J. Wu, and C. Zhao, Spectrochim. Acta, A 226, 117600 (2020). https://doi.org/10.1016/j.saa.2019.117600

    Article  CAS  Google Scholar 

  102. B. B. Prasad and S. Fatma, Sens. Actuators, B 229, 655 (2016). https://doi.org/10.1016/j.snb.2016.02.028

    Article  CAS  Google Scholar 

  103. T. Liu, Y. Luo, L. Kong, et al., Sens. Actuators, B 235, 568 (2016). https://doi.org/10.1016/j.snb.2016.05.116

    Article  CAS  Google Scholar 

  104. P. Pathirathna, Y. Yang, K. Forzley, et al., Anal. Chem. 84, 6298 (2012). https://doi.org/10.1021/ac301358r

    Article  CAS  Google Scholar 

  105. J. Holmes, P. Pathirathna, and P. Hashemi, Trends Anal. Chem. 111, 206 (2019). https://doi.org/10.1016/j.trac.2018.11.003

    Article  CAS  Google Scholar 

  106. X. Chai, X. Zhou, A. Zhu, et al., Angew. Chem., Int. Ed. 52, 8129 (2013). https://doi.org/10.1002/anie.201302958

    Article  CAS  Google Scholar 

  107. H. Gu, Q. Hou, Y. Liu, et al., Biosens. Bioelectron. 135, 111 (2019). https://doi.org/10.1016/j.bios.2019.03.014

    Article  CAS  Google Scholar 

  108. R. K. Mahajan, I. Kaur, and T. S. Lobana, Talanta 59, 101 (2003). https://doi.org/10.1016/S0039-9140(02)00473-3

    Article  CAS  Google Scholar 

  109. J. Ding and W. Qin, Trends Anal. Chem. 124, 115803 (2020). https://doi.org/10.1016/j.trac.2019.115803

    Article  CAS  Google Scholar 

  110. E. Y. Frag, M. El Badry Mohamed, and E. M. Fahim, Biosens. Bioelectron. 131, 309 (2019). https://doi.org/10.1016/j.bios.2019.02.034

    Article  CAS  Google Scholar 

  111. V. K. Singh, C. S. Kushwaha, and S. K. Shukla, Int. J. Biol. Macromol. 147, 250 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.209

    Article  CAS  Google Scholar 

  112. L. A. Romero-Cano, A. I. Zárate-Guzmán, F. Carrasco-Marín, and L. V. González-Gutiérrez, J. Electroanal. Chem. 837, 22 (2019). https://doi.org/10.1016/j.jelechem.2019.02.005

    Article  CAS  Google Scholar 

  113. M. Karhanek, J. T. Kemp, N. Pourmand, et al., Nano Lett. 5, 403 (2005). https://doi.org/10.1021/nl0480464

    Article  CAS  Google Scholar 

  114. S. Howorka and Z. Siwy, Chem. Soc. Rev. 38, 2360 (2009). https://doi.org/10.1039/B813796J

    Article  CAS  Google Scholar 

  115. H. He, X. Xu, and Y. Jin, Anal. Chem. 86, 4815 (2014). https://doi.org/10.1021/ac404168s

    Article  CAS  Google Scholar 

  116. B. Vilozny, P. Actis, R. A. Seger, et al., Anal. Chem. 83, 6121 (2011). https://doi.org/10.1021/ac201322v

    Article  CAS  Google Scholar 

  117. A. Erofeev, P. Gorelkin, A. Garanina, et al., Sci. Rep., No. 2, 1 (2018). https://doi.org/10.1038/s41598-018-25852-4

  118. N. Sa, Y. Fu, and L. A. Baker, Anal. Chem. 82, 9963 (2010). https://doi.org/10.1021/ac102619j

    Article  CAS  Google Scholar 

  119. Q. Zhai, J. Wang, H. Jiang, et al., Talanta 140, 219 (2015). https://doi.org/10.1016/j.talanta.2015.03.035

    Article  CAS  Google Scholar 

  120. D. Kaya and K. Kececi, Bulgar. Chem. Commun. 49, 37 (2017). https://www.semanticscholar.org/paper/Preparation-of-nanopores-and-their-application-for-Kaya-Kececi/7211e19fc2bef6de60ad87b0bf0aa5db22d133c2

  121. L. J. Steinbock, R. D. Bulushev, S. Krishnan, et al., ACS Nano 7, 11255 (2013). https://doi.org/10.1021/nn405029j

    Article  CAS  Google Scholar 

  122. C. Han, X. Hou, H. Zhang, et al., J. Am. Chem. Soc. 133, 7644 (2011). https://doi.org/10.1021/ja2004939

    Article  CAS  Google Scholar 

  123. S. Umehara, M. Karhanek, R. W. Davis, and N. Pourmand, Proc. Natl. Acad. Sci. U. S. A. 106, 4611 (2009). https://doi.org/10.1073/pnas.0900306106

    Article  Google Scholar 

  124. H. He, X. Xu, P. Wang, et al., Chem. Commun. 51, 1914 (2015). https://doi.org/10.1039/C4CC09185J

    Article  CAS  Google Scholar 

  125. P. Actis, B. Vilozny, R. A. Seger, et al., Langmuir 27, 6528 (2011). https://doi.org/10.1021/la2005612

    Article  CAS  Google Scholar 

  126. J. L. Gornall, K. R. Mahendran, O. J. Pambos, et al., Nano Lett. 11, 3334 (2011). https://doi.org/10.1021/nl201707d

    Article  CAS  Google Scholar 

  127. S. Papp, G. Jágerszki, and R. E. Gyurcsányi, Angew. Chem., Int. Ed. 57, 4752 (2018). https://doi.org/10.1002/ange.201800954

    Article  CAS  Google Scholar 

  128. A. S. Erofeev, P. V. Gorelkin, A. G. Majouga, et al., WO Patent WO2017/116267AI (2017), pp. 1–25.

    Google Scholar 

  129. G. Wang, L. Wang, Y. Han, et al., Biosens. Bioelectron. 53, 453 (2014). https://doi.org/10.1016/j.bios.2013.10.013

    Article  CAS  Google Scholar 

  130. L. Chen, H. He, X. Xu, and Y. Jin, Anal. Chim. Acta 889, 98 (2015). https://doi.org/10.1016/j.aca.2015.06.051

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-74-10059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Timoshenko.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, R.V., Vaneev, A.N., Savin, N.A. et al. Promising Approaches for Determination of Copper Ions in Biological Systems. Nanotechnol Russia 15, 121–134 (2020). https://doi.org/10.1134/S1995078020020196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020196

Navigation