Skip to main content
Log in

Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A microcantilever was modified with a self-assembled monolayer (SAM) of L-cysteine for the sensitively and selectively response to Cu(II) ions in aqueous solution. The microcantilever undergoes bending due to sorption of Cu(II) ions. The interaction of Cu(II) ions with the L-cysteine on the cantilever is diffusion controlled and does not follow a simple Langmuir adsorption model. A concentration of 10−10 M Cu(II) was detected in a fluid cell using this technology. Other cations, such as Ni2+, Zn2+, Pb2+, Cd2+, Ca2+, K+, and Na+, did not respond with a significant deflection, indicating that this L-cysteine-modified cantilever responded selectively and sensitively to Cu(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris, E. D. (2001). Copper homeostasis: the role of cellular transporters. Nutrition Reviews, 59, 281–285.

    Article  CAS  Google Scholar 

  2. Watts, D. L. (1998). The nutritional relationships of copper. Journal of Orthomolecular Medicine, 4, 99–109.

    Google Scholar 

  3. Brewer, G. J. (2012). Wilson’s disease. In D. L. Longo, A. S. Fauci, D. L. Kasper, S. L. Hauser, J. L. Jameson, & J. Loscalzo (Eds.), Harrison’s principles of internal medicine. 18th ed (pp. 3188–3190). New York: McGraw-Hill.

    Google Scholar 

  4. Odell, B. L. (1982). Biochemical basis of the clinical effects of copper deficiency (pp. 301–313). New York: Alan R Liss Inc.

    Google Scholar 

  5. Turnlund, J. R., Jacob, R. A., Keen, C. L., Strain, J. J., Kelley, D. S., Domek, J. M., et al. (2004). Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. American Journal of Clinical Nutrition, 79, 1037–1044.

    CAS  Google Scholar 

  6. Thundat, T., Chen, G. Y., Warmack, R. J., Allison, D. P., & Wachter, E. A. (1996). Vapor detection using resonating microcantilevers. Analytical Chemistry, 67, 519–521.

    Article  Google Scholar 

  7. Chen, G. Y., Thundat, T., Wachter, E. A., & Warmack, R. J. (1995). Adsorption-induced surface stress and its effects on resonance frequency of microcantilever. Journal of Applied Physics, 77, 3618–3622.

    Article  CAS  Google Scholar 

  8. Lee, D., Kwon, D., Ko, W., Joo, J., Seo, H., Lee, S. S., & Jeon, S. (2012). A rapid and facile signal enhancement method for microcantilever-based immunoassays using the agglomeration of ferromagnetic nanoparticles. Chemical Communications, 48(57), 7182–7184.

    Article  CAS  Google Scholar 

  9. Ziegler, C. (2004). Cantilever-based biosensors. Analytical and Bioanalytical Chemistry, 379, 946–959.

    CAS  Google Scholar 

  10. Johnson, B. N., & Mutharasan, R. (2012). Biosensing applications using dynamic-mode cantilever sensors: a review. Biosensors & Bioelectronics, 32, 1–18.

    Article  CAS  Google Scholar 

  11. Lavrik, N. V., Sepaniak, M. J., & Datskos, P. G. (2004). Cantilever transducers as a platform for chemical and biological sensors. The Review of Scientific Instruments, 75, 2229–2253.

    Article  CAS  Google Scholar 

  12. Ji, H. F., & Armon, B. (2010). Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Analytical Chemistry, 82, 1634–1642.

    Article  CAS  Google Scholar 

  13. Muller, P., & Kern, R. (1994). About the measurement of absolute isotropic surface stress of crystals. Surface Science, 301, 386–398.

    Article  Google Scholar 

  14. Cleveland, J. P., Manne, S., Bocek, D., & Hansma, P. K. (1993). Nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64, 403–405.

    Article  CAS  Google Scholar 

  15. Butt, J. J. (1996). A sensitive method to measure changes in the surface stress of solids. Journal of Colloid Interface Science, 180, 251–260.

    Article  CAS  Google Scholar 

  16. Gimzewski, J. K., Gerber, C., Meyer, E., & Schlittler, R. R. (1994). Observation of a chemical-reaction using a micromechanical sensor. Chemical Physics Letters, 217, 589–594.

    Article  CAS  Google Scholar 

  17. Raiteri, R., & Butt, H.-J. (1995). Measuring electrochemically induced surface stress with an atomic force microscope. Journal of Physical Chemistry, 99, 15728–15732.

    Article  CAS  Google Scholar 

  18. Rubinstein, I., Steinberg, S., Tor, Y., Shanzer, A., & Sagiv, J. (1988). Ionic recognition and selective response in self-assembling monolayer membrane on electrodes. Nature, 332, 426–429.

    Article  CAS  Google Scholar 

  19. Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whitesides, G. M., & Nuzzo, R. G. (1989). Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 111, 321–335.

    Article  CAS  Google Scholar 

  20. Thoden van Velzen, E. U., Engbersen, J. F. J., & Reinhoudt, D. N. J. (1994). Self-assembled monolayers of receptor adsorbates on gold: preparation and characterization. Journal of the American Chemical Society, 116, 3597–3598.

    Article  CAS  Google Scholar 

  21. Aoki, H., Buhlmann, P., & Umezawa, Y. (1999). Self-assembly of a tricarboxylate receptor through thioamide groups and its use for electrochemical detection of protonated amines. Journal of Electroanalytical Chemistry, 473, 105–112.

    Article  CAS  Google Scholar 

  22. Wink, T., van Zuilen, S. J., Bult, A., & van Bennekom, W. P. (1997). Self-assembled monolayers for biosensors. Analyst, 122, 43R–50R.

    Article  CAS  Google Scholar 

  23. Gooding, J., & Brynn, H. D. (1999). The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends in Analytical Chemistry, 18, 525–533.

    Article  CAS  Google Scholar 

  24. Flink, S., Van Veggel, F. C. J. M., & Reinhoudt, D. N. (2000). Sensor functionalities in self-assembled monolayers. Advanced Materials, 12, 1315–1328.

    Article  CAS  Google Scholar 

  25. Hansen, K., Ji, H. F., Guanghua, W., Datar, R., Cote, R., Majumdar, A., & Thundat, T. (2001). Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry, 73, 1567–1571.

    Article  CAS  Google Scholar 

  26. Ji, H. F., & Thundat, T. (2002). In situ detection of calcium ions with chemically modified microcantilevers. Biosensors & Bioelectronics, 17, 337–343.

    Article  CAS  Google Scholar 

  27. Wadsak, M., Schreinger, M., Aastrup, T., & Leygraf, C. (2000). Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM. Surface Science, 454, 246–250.

    Article  Google Scholar 

  28. Telegdi, J., Shaban, A., & Kálmán, E. (2000). EQCM study of copper and iron corrosion inhibition in presence of organic inhibitors and biocides. Electrochimica Acta, 45(22), 3639–3647.

    Article  CAS  Google Scholar 

  29. Liu, A. C., Chen, D. C., Lin, C. C., Chou, H. H., & Chen, C. H. (1999). Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II). Analytical Chemistry, 71, 1549–1552.

    Article  CAS  Google Scholar 

  30. Arrigan, D. W. M., & Le Bihan, L. (1999). A study of L-cysteine adsorption on gold via electrochemical desorption and copper(II) ion complexation. Analyst, 124, 1645–1649.

    Article  CAS  Google Scholar 

  31. Yang, W., Gooding, J. J., & Hibbert, D. B. (2001). Characterisation of gold electrodes modified with self-assembled monolayers of l-cysteine for the adsorptive stripping analysis of copper. Journal Electroanalytical Chemistry, 516, 10–16.

    Article  CAS  Google Scholar 

  32. Bai, Y., Ruan, X., Mo, J., & Xie, Y. (1998). Potentiometric stripping analysis of copper using cysteine modified mercury film electrode. Analytica Chimica Acta, 373, 39–46.

    Article  CAS  Google Scholar 

  33. Taillades, G., Valls, O., Bratov, A., Dominguez, C., Pradel, A., & Ribes, M. (1999). ISE and ISFET microsensors based on a sensitive chalcogenide glass for copper ion detection in solution. Sensors and Actuators B-Chemical, 59, 123–127.

    Article  CAS  Google Scholar 

  34. Yang, W., Jaramillo, D., Gooding, J. J., Hibbert, D. B., Zhang, R., Willett, G. D., & Fisher, K. J. (2001). Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes. Chemical Communication, 1982–1983.

  35. Yang, Y., Ji, H.-F., & Thundat, T. (2003). Nerve agents detection using a Cu2+/L-cysteine bilayer-coated microcantilever. Journal of the American Chemical Society, 125, 1124–1125.

    Article  CAS  Google Scholar 

  36. Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E., & Guntherodt, H.-J. (1998). Surface stress in the self-assembly of alkanethiols on gold probed by a force microscopy technique. Applied Physics A: Materials Science & Processing, 66, S55–S59.

    Article  CAS  Google Scholar 

  37. Kallay N ed. (2000). Interfacial dynamics. Marcel Dekker Inc.

  38. Almgren, M., Linse, P., Van der Auweraer, M., De Schryver, F. C., Gelade, E., & Croonen, Y. (1984). Fluorescence quenching by counter ions in ionic micelle solution. The effect of ion migration. Journal of Physical Chemistry, 88, 289–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. F. Ji, X. Xu, and N. Zhang thank NSF Sensor and Sensor Network ECS-0428263 for financially supporting this research. T. Thundat and G. M. Brown were funded by the Environmental Remediation Sciences Division, Office of Biological and Environmental Research, Environmental Management Science Program, US Department of Energy, under contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory managed and operated by UT-Battelle, LLC for the USDOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, N., Brown, G.M. et al. Ultrasensitive Detection of Cu2+ Using a Microcantilever Sensor Modified with L-Cysteine Self-Assembled Monolayer. Appl Biochem Biotechnol 183, 555–565 (2017). https://doi.org/10.1007/s12010-017-2511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2511-7

Keywords

Navigation