Skip to main content
Log in

Nanostructured TiO2-TiOF2 composite synthesized by the original method of pulsed high-voltage discharge as anode material for Li-ion battery

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

It has been demonstrated for the first time that an original method of pulsed high-voltage discharge is efficient for the preparing of nanostructures promising for application in Li-ion batteries. In particular, a nanostructured TiO2-TiOF2 composite is synthesized as a result of destructing Ti electrodes and polytetrafluoroethylene in plasma. It is established that TiO2-TiOF2 is a porous structure composed of TiO2 and TiOF2 nanocrystallites 40–200 nm in size. The diameter of pores varies from 3 to 5 nm. The discharge capacity of a Li/TiO2-TiOF2 half-cell during a first cycle at a current density of 20 mA/g in voltage range from 3 to 0.005 V amounted to 1370 mA h/g, which exceeds (due to the presence of TiO2) the theoretical capacity of TiOF2. The cycling of Li/TiO2-TiOF2 characterizes the stability of the capacity about 205 mA h/g after the 20th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, and L. Qi, J. Am. Chem. Soc. 133, 933 (2011).

    Article  Google Scholar 

  2. Z. Ren, C. Chen, X. Fu, J. Wang, C. Fan, G. Qian, and Z. Wang, Mater. Lett. 17, 124 (2014).

    Article  Google Scholar 

  3. T. L. Kulova, Russ. J. Electrochem. 49, 1 (2013).

    Article  Google Scholar 

  4. W. H. Ryu, D. H. Nam, Y. S. Ko, R. H. Kim, and H. S. Kwon, Electrochim. Acta 61, 19 (2012).

    Article  Google Scholar 

  5. M. J. Armstrong, C. O’Dwyer, W. J. Macklin, and J. D. Holmes, Nano Res. 7, 1 (2014).

    Article  Google Scholar 

  6. H. Kondo, T. Honma, and T. Komatsu, J. Non-Cryst. Solids 402, 153–159 (2014).

    Article  Google Scholar 

  7. T. Kesavan, S. Suresh, I. Arulraj, P. Ragupathy, and S. Dheenadayalan, Mater. Lett. 136, 411–415 (2014).

    Article  Google Scholar 

  8. V. M. Buznik and V. G. Kuryavyi, Russ. J. Gen. Chem. 76, 666–676 (2009).

    Article  Google Scholar 

  9. S. Xie, X. Han, Q. Kuang, J. Fu, L. Zhang, Z. Xie, and L. Zheng, Chem. Commun. 47, 6722 (2011).

    Article  Google Scholar 

  10. L. Chen, L. Shen, P. Nie, X. Zhang, and H. Li, Electrochim. Acta 62, 408 (2012).

    Article  Google Scholar 

  11. M. V. Reddy, S. Madhavi, G. V. S. Rao, and B. V. R. Chowdari, J. Power Sources 162, 1312 (2006).

    Article  Google Scholar 

  12. Y. Zeng, W. Zhang, C. Xu, N. Xiao, Y. Huang, D. Y. Yu, H. H. Hng, and Q. Yan, Chem.: Eur. J. 18, 4026 (2012).

    Article  Google Scholar 

  13. S. N. Beznosov, M. G. Pyatibratov, O. V. Fedorov, T. L. Kulova, and A. M. Skundin, Nanotech. Russ. 6(11–12), 705 (2011).

    Article  Google Scholar 

  14. A. Yu. Tsivadze, T. L. Kulova, and A. M. Skundin, Prot. Met. Phys. Chem. Surf. 49, 145 (2013).

    Article  Google Scholar 

  15. A. M. Serventi, I. R. Rodrigues, M. L. Trudeau, D. Antonelli, and K. Zaghib, J. Power Sources 202, 357 (2012).

    Article  Google Scholar 

  16. J.-H. Jeong, D.-W. Jung, E. W. Shin, and E.-S. Oh, J. Alloy. Compd. 604, 226 (2014).

    Article  Google Scholar 

  17. M. G. Choi, Y. G. Lee, S. W. Song, and K. M. Kim, Electrochim. Acta 55, 5975 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gnedenkov.

Additional information

Original Russian Text © S.V. Gnedenkov, D.P. Opra, V.G. Kuryavyi, S.L. Sinebryukhov, A.Yu. Ustinov, V.I. Sergienko, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedenkov, S.V., Opra, D.P., Kuryavyi, V.G. et al. Nanostructured TiO2-TiOF2 composite synthesized by the original method of pulsed high-voltage discharge as anode material for Li-ion battery. Nanotechnol Russia 10, 353–356 (2015). https://doi.org/10.1134/S1995078015030076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030076

Keywords

Navigation