Skip to main content
Log in

Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Four aromatic amino acids (p-aminobenzoic, 4,6-diaminoisophthalic, o-aminobenzoic, and methylene-bis-anthranilic) were studied by FTIR spectroscopy. The first two molecules were found to exist in the solid phase exclusively in neutral form and the latter two in coexisting neutral and ionic forms. The shift of the tautomeric equilibrium from neutral molecule to zwitterion is determined by the character of substitution, molecular conformation, and the possibility of noncovalent bonds formed between the functional groups. The separation of charges becomes possible only if the conformers of the molecule include a structure with an OH….N intramolecular hydrogen bond. The proton is completely transferred from the acid group to the amino group when the strong intermolecular hydrogen bonds can stabilize the formed zwitterion. Otherwise, uncharged complexes with different degrees of proton transfer to the amino group are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. GomezZavaglia and R. Fausto, Phys. Chem. Phys. 5, 3154 (2003).

    Article  CAS  Google Scholar 

  2. V. Susindran, S. Athimoolam, and S. A. Bahadur, J. Chem. Pharm. Res. 4, 4628 (2012).

    Google Scholar 

  3. A. A. Kamnev, E. Kuzmann, Yu. D. Perfiliev, Gy. Vanko, and A. Vertes, J. Mol. Struct. 482¨C483, 703 (1999).

    Article  Google Scholar 

  4. Condensation Monomers, Ed. by J. K. Stille and T. W. Campbell (Wiley, New York, 1972), p. 596.

  5. J. Tsuji and T. Susuki, GB Patent No. CA889311 A.

  6. A. S. Davydov, Ukr. J. Phys. 53, 65 (2008).

    CAS  Google Scholar 

  7. D. Hadzi, J. Grdadolnik, and A. Meden, J. Mol. Struct. 381, 9 (1996).

    Article  CAS  Google Scholar 

  8. F. Bush, J. Oomens, R. J. Saykally, and E. R. Williams, J. Am. Chem. Soc. 139, 6463 (2008).

    Article  Google Scholar 

  9. P. Rabindra Reddy, M. Radhika, and P. Manjila, J. Chem. Sci. 117, 239 (2005).

    Article  Google Scholar 

  10. J. Dybal, T. C. Cheam, and S. Krimm, J. Mol. Struct. 159, 183 (1987).

    Article  CAS  Google Scholar 

  11. I. D. Reva and S. G. Stepanian, J. Mol. Struct. 349, 337 (1995).

    Article  CAS  Google Scholar 

  12. H. T. Flakus, J. Mol. Struct. 187, 35 (1989).

    Article  Google Scholar 

  13. H. T. Flakus and A. JarezykJedryka, J. At. Mol. Opt. Phys. 2012, 12547117 (2012).

    Google Scholar 

  14. W. Zierkiewicz, L. Komorowski, D. Michalska, J. Cerny, and P. Hobza, J. Phys. Chem. B 112, 16734 (2008).

  15. G. von Helden, I. Compagnon, M. N. Blom, et al., Phys. Chem. Chem. Phys. 10, 1248 (2008).

    Article  Google Scholar 

  16. R. Maul, F. Ortmann, M. Preuss, K. Hannewald, and F. Bechstedt, J. Comput. Chem. 28, 1817 (2007).

  17. J. E. Rode, J. Cz. Dobrowolski, and J. Sadliej, J. Mol. Model. 17, 961 (2011).

    Article  CAS  Google Scholar 

  18. B. J. Sponer, J. Leszczynski, and P. Hobza, Biopoly-mers 61, 3 (2002).

    Article  CAS  Google Scholar 

  19. S. Wang and H. F. Schaefer, J. Chem. Phys. 124, 044303 (2006).

    Article  Google Scholar 

  20. P. Hobza and V. Spirko, Phys. Chem. Chem. Phys. 5, 1290 (2003).

    Article  CAS  Google Scholar 

  21. J. Oomens, J. D. Steill, and B. Redlich, J. Am. Chem. Soc. 131, 4310 (2009).

    Article  CAS  Google Scholar 

  22. Z. B. Maksik and B. Kovacevik, J. Chem. Soc., Perkin Trans. 2, 2622 (1999).

    Google Scholar 

  23. V. D. Maiorov and I. S. Kislina, Khim. Fiz. 11, 660 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Andreeva.

Additional information

Original Russian Text © O.A. Andreeva, L.A. Burkova, I.V. Podeshvo, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 12, pp. 32–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, O.A., Burkova, L.A. & Podeshvo, I.V. Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium. Russ. J. Phys. Chem. B 9, 869–875 (2015). https://doi.org/10.1134/S1990793115060147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115060147

Keywords

Navigation