Skip to main content
Log in

IR spectroscopy studies of sodium salts of some aminobenzoic acid derivatives

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Products of a reaction of four aromatic amino acids—para-aminobenzoic (p-ABA), ortho-aminobenzoic (o-ABA), methyl-bis-anthranilic (MBAA), and 4,6-diamino-isophthalic (DAPhA)—with sodium hydroxide have been studied by Fourier-transform IR spectroscopy. It has been shown that acid groups do not undergo complete conversion to salt groups because a decrease in the solution pH during reaction leads to a shift of the tautomeric equilibrium toward the formation of zwitterions. In the solid phase, the zwitterions remain in compounds in which they are present in the acids (MBAA and o-ABA) and appear in the DAPhA salt owing to the electron density redistribution in the aromatic ring. It has been found that the p-ABA salt molecules are in the canonical form. The formation of the salts leads to a change in the supramolecular organization of the molecules in the solid phase. The most energetically favorable intermolecular hydrogen bond of carboxylic acid dimers is replaced by the hydrogen bond between the oxygen atoms of the carboxylate anions and the protons of the amino groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Glusker, A. K. Katz, and C. W. Bock, The Rigaku J. 16, 8 (1999).

    CAS  Google Scholar 

  2. N. C. Polfer, Chem. Soc. Rev. 40, 2211 (2011).

    Article  CAS  Google Scholar 

  3. F. Bush, J. Oomens, R. J. Saykally, and E. R. Williams, J. Am. Chem. Soc. 139, 6463 (2008).

    Article  Google Scholar 

  4. M. K. Drayss, D. Blunk, J. Oomens, and M. Schafer, J. Phys. Chem. A 112, 11972 (2008).

    Article  CAS  Google Scholar 

  5. M. W. Forbes, M. F. Bush, N. C. Polfer, et al., J. Phys. Chem. A 111, 11759 (2007).

    Article  CAS  Google Scholar 

  6. M. F. Bush, M. W. Forbes, R. A. Jockusch, J. Oomens, N. C. Polfer, R. J. Saykally, and E. F. Williams, J. Phys. Chem. A 111, 7753 (2007).

    Article  CAS  Google Scholar 

  7. J. S. Prell, J. T. O’Brien, J. D. Steill, J. Oomens, and E. R. Williams, J. Am. Chem. Soc. 131, 11442 (2009).

    Article  CAS  Google Scholar 

  8. J. T. O’Brien, J. S. Prell, J. D. Steill, J. Oomens, and E. R. Williams, J. Phys. Chem. A 112, 10823 (2008).

    Article  Google Scholar 

  9. O. A. Andreeva, L. A. Burkova, and I. V. Podeshvo, Russ. J. Phys. Chem. B 9, 869 (2015).

    Article  CAS  Google Scholar 

  10. R. Swislocka, M. Samsonowicz, E. Regulska, and W. Lewandowski, J. Mol. Struct. 792, 227 (2006).

    Article  Google Scholar 

  11. M. Samsonowicz, R. Swislocka, E. Regulska, and W. Lewandowski, J. Mol. Struct. 887, 220 (2008).

    Article  CAS  Google Scholar 

  12. S. Vahur, A. Teearu, P. Peets, L. Joosu, and I. Leito, Anal. Bioanal. Chem. 408, 3373 (2016).

    Article  CAS  Google Scholar 

  13. H. Sayyed, A. R. Shaikh, and F. Mazahar, World J. Pham. Pharmaceut. Sci. 3, 632 (2014).

    Google Scholar 

  14. O. K. Abou-Zied, B. Y. Al-Busaidi, and J. Husband, J. Phys. Chem. A 118, 103 (2014).

    Article  CAS  Google Scholar 

  15. H. Parshad, K. Frydenvang, T. Liljefors, H. O. Sorensen, and C. Larsen, Int. J. Pharmaceut. 269, 157 (2004).

    Article  CAS  Google Scholar 

  16. L. Zapala, E. Woznicka, and J. Kalembkiewicz, J. Solution Chem. 43, 1167 (2014).

    Article  CAS  Google Scholar 

  17. M. Nara, H. Torii, and M. Tasumi, J. Phys. Chem. 100, 19812 (1996).

    Article  CAS  Google Scholar 

  18. B. J. Sponer, J. Leszczynski, and P. Hobza, Biopolymers 61, 3 (2002).

    Article  CAS  Google Scholar 

  19. H. T. Flakus, J. Mol. Struct. 187, 35 (1989).

    Article  Google Scholar 

  20. L. A. J. Jesus and J. S. Redinha, J. Phys. Chem. A 115, 14069 (2011).

    Article  CAS  Google Scholar 

  21. C. Arderne, D. K. Olivier, and T. D. Ndinteh, Acta Crystallogr. C 71, 146 (2015).

    Article  CAS  Google Scholar 

  22. P. Sahoo, D. K. Kumar, S. R. Raghavan, and P. Dastidar, Chem. Asian J 6, 1038 (2011).

    Article  CAS  Google Scholar 

  23. P. Bourosh, M. E. Maffei, A. Formi, et al., PloS One 9 (7), e101892(2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Burkova.

Additional information

Original Russian Text © O.A. Andreeva, L.A. Burkova, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 6, pp. 12–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, O.A., Burkova, L.A. IR spectroscopy studies of sodium salts of some aminobenzoic acid derivatives. Russ. J. Phys. Chem. B 11, 411–418 (2017). https://doi.org/10.1134/S1990793117030149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117030149

Keywords

Navigation