Skip to main content
Log in

Electron Transport in Chloroplast Membranes of Shade-Tolerant and Light Loving Tradescantia Species

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The processes of electronic transport in chloroplasts of two contrasting species of Tradescantia, the shade-tolerant species Tradescantia fluminensis and the light loving species T. sillamontana, grown in moderate or strong light conditions were investigated. The parameters of fast (OJIP test) and slow induction of fluorescence (SIF) of chlorophyll a in chloroplasts in vivo and in situ were used as indicators reflecting the photochemical activity of photosystem 2 (PS2). The coefficient of nonphotochemical quenching of chlorophyll a fluorescence, which provides protection of the photosynthetic apparatus from light stress, was determined from the SIF kinetics. The functioning of photosystem 1 (PS1) was monitored by the kinetics of photoinduced changes in the redox state of P700, the reaction center of PS1, recorded by electron paramagnetic resonance. A significant difference in the dynamics of changes in photosynthetic parameters of shade-tolerant and light loving tradescantia species under conditions of prolonged acclimation of plants (up to 5 months) to moderate (50–125 µmol photons m–2 s–1) or strong (850–1000 µmol photons m–2 s–1) illumination with photosynthetically active white light was observed. In the light loving species T. sillamontana, photosynthetic parameters of chloroplasts changed slightly during acclimation of plants to moderate and strong light. Photosynthetic characteristics of leaves of shade-tolerant species T. fluminenesis were sensitive to the conditions of illumination, which indicated a weakening of photochemical activity with an increase in light intensity during acclimation of plants. The effect of attenuation of photosynthetic parameters of the leaves was reversible, that is, the fluorescence parameters returned to the initial level after attenuation of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Haehnel W. 1984. Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 35, 659–693.

    Article  CAS  Google Scholar 

  2. Nelson N., Yocum C.F. 2006. Structure and function of photosystems I and II. Annu. Rev. Plant. Biol. 57, 521–565.

    Article  CAS  PubMed  Google Scholar 

  3. Mamedov M., Govindjee, Nadtochenko V., Semenov A. 2015. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth. Res. 125, 51–63.

    Article  CAS  PubMed  Google Scholar 

  4. Tikhonov A.N. 2014. The cytochrome b 6 f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol. Biochem. 81, 163–183.

    Article  CAS  PubMed  Google Scholar 

  5. Malone L.A., Proctor M.S., Hitchcock A., Hunter C.N., Johnson M.P. 2021.Cytochrome b 6 f – Orchestrator of photosynthetic electron transfer. Biochim. Biophis. Acta. 1862, 148380.https://doi.org/10.1016/j.bbabio.2021.148380

  6. Höhner R., Pribil M., Herbstová M., Lopez L.S., Kunz H.-H., Li M., Wood M., Svoboda V., Puthiyaveetil S., Leister D., Kirchhoff  H. 2020. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl. Acad. Sci. USA. 117, 15354–15362.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boyer P.D. 1997. The ATP synthase – a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749.

    Article  CAS  PubMed  Google Scholar 

  8. Junge W., Nelson N. 2015. ATP synthase. Annu. Rev. Biochem. 83, 631–657.

    Article  Google Scholar 

  9. Romanovsky Yu.M., Tikhonov A.N. 2010. Molecular energy converters of a living cell. Proton ATP synthase is a rotating molecular motor. Uspekhi fizicheskikh nauk (Rus.). 180, 931–956.

  10. Edwards J., Walker D. 1986. Fotosintez C3 i C4 v rasteniy: mehanizmi i reguliatsiya. (Photosynthesis of C3 and C4 in plants: Mechanisms and regulation). M.: Mir.

  11. Allakhverdiev S.I., Murata N. 2004. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophis. Acta. 1657, 23–32.

    Article  CAS  Google Scholar 

  12. Järvi S., Suorsa M., Aro E.-M. 2015. Photosystem II repair in plant chloroplasts — Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta. 1847, 900–909.

    Article  PubMed  Google Scholar 

  13. Kono M., Terashima I. 2014. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B. 137, 89–99.

    Article  CAS  PubMed  Google Scholar 

  14. Berry J., Björkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543.

    Article  Google Scholar 

  15. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. 2008. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550.

    Article  CAS  PubMed  Google Scholar 

  16. Allen D.J., Ort D.R. 2001. Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci. 6, 36–42.

    Article  CAS  PubMed  Google Scholar 

  17. Tikhonov A.N., Vershubskii A.V. 2020. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 146, 299–329.

    Article  CAS  PubMed  Google Scholar 

  18. Michelet L., Zaffagnini M., Morisse S., Sparla F., Pérez-Pérez M.E., Francia F., Danon A., Marchand C.H., Fermani S., Trost P., Lemaire S.D. 2013. Redox regulation of the Calvin-Benson cycle: Something old, something new. Front. Plant Sci. 4, 470. https://doi.org/10.3389/fpls.2013.00470

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balsera M., Schumann P., Buchanan B.B. 2016. Redox regulation in chloroplasts. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 187–207.

    Google Scholar 

  20. Rumberg B., Siggel U. 1969. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften. 56, 130–132.

    Article  CAS  PubMed  Google Scholar 

  21. Kramer D.M., Sacksteder C.A., Cruz J.A. 1999. How acidic is the lumen? Photosynth. Res. 60, 151–163.

    Article  CAS  Google Scholar 

  22. Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534.

    Article  CAS  PubMed  Google Scholar 

  23. Schansker G. 2022. Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR. Photosynth. Res. 153, 191–204.

    Article  CAS  PubMed  Google Scholar 

  24. Lemeille S., Rochaix J.-D. 2010. State transitions at the crossroad of thylakoid signalling pathways. Photosynth. Res. 106, 33–46.

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenthaler H.K., Babani F. 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Chlorophyll a Fluorescence. Springer, p. 713–736.

    Google Scholar 

  26. Lichtenthaler H.K., Babani F., Navrátil M., Buschmann C. 2013. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynth. Res. 117, 355–366.

    Article  CAS  PubMed  Google Scholar 

  27. Kirchhoff H. 2013. Architectural switches in plant thylakoid membranes. Photosynth. Res. 116, 481–487.

    Article  CAS  PubMed  Google Scholar 

  28. Tikkanen M., Jarvi S., Aro E.-M. 2015. Light acclimation involves dynamic re-organization of the pigment–protein megacomplexes in non-appressed thylakoid domains. The Plant J. 84, 360–373.

    Article  PubMed  Google Scholar 

  29. Puthiyaveetil S., Kirchhoff H., Höhner R. 2016. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 59–87.

    Google Scholar 

  30. Demmig-Adams B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39, 474–482.

    Article  CAS  Google Scholar 

  31. Samoilova O.P., Ptushenko V.V., Kuvykin I.V., Kiselev S.A., Ptushenko O.S., Tikhonov A.N. 2011. Effects of light environment on the induction of chlorophyll fluorescence in leaves: A comparative study of Tradescantia species of different ecotypes. BioSystems. 105, 41–48.

    Article  CAS  PubMed  Google Scholar 

  32. Ptushenko V.V., Ptushenko E.A., Samoilova O.P., Tikhonov A.N. 2013. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: Induction events at different intensities of actinic light. Biosystems. 114, 85–97.

    Article  CAS  PubMed  Google Scholar 

  33. Mishanin V.I., Trubitsin B.V., Benkov M.A., Minin A.A., Tikhonov A.N. 2016. Light acclimation of shade-tolerant and light-resistant Tradescantia species: Induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth. Res. 130, 275–291.

    Article  CAS  PubMed  Google Scholar 

  34. Mishanin V.I., Trubitsin B.V., Patsaeva S.V., Ptushenko V.V., Solovchenko A.E., Tikhonov A.N. 2017. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: Chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth. Res. 133, 87–102.

    Article  CAS  PubMed  Google Scholar 

  35. Ptushenko V.V., Zhigalova T.V., Avercheva O.V., Tikhonov A.N. 2019. Three phases of energy-dependent induction of \({\text{P}}_{{700}}^{ + }\) and Chl a fluorescence in Tradescantia fluminensis leaves. Photosynth. Res. 139, 509–522.

    Article  CAS  PubMed  Google Scholar 

  36. Benkov M.A., Yatsenko A.M., Tikhonov A.N. 2019. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: Photochemical activity of PSII and its sensitivity to heat treatment. Photosynth. Res. 139, 203–214.

    Article  CAS  PubMed  Google Scholar 

  37. Suslichenko I.S., Tikhonov A.N. 2019. Photo-reducible plastoquinone pools in chloroplasts of Tradescantia plants acclimated to high and low light. FEBS Lett. 593, 788–798.

    Article  CAS  PubMed  Google Scholar 

  38. Randall R.P. 2012. A global compendium of weeds. 2nd edn. Department of Agriculture and Food, Western Australia.

    Google Scholar 

  39. Lyutova M.I., Tikhonov A.N. 1988. Comparison of the temperature dependence of lipid-soluble spin label mobility in thylakoid membranes of melon and cucumber chloroplasts. Biofizika (Rus.). 33, 460–464.

    CAS  Google Scholar 

  40. Anderson J.M., Chow W.S., Park Y., Franklin L.A., Robinson S.P.-A., van Hasselt P.R. 2001. Response of Tradescantia alRFIora to growth irradiance: Change versus changeability. Photosynth. Res. 67, 103–112.

    Article  CAS  PubMed  Google Scholar 

  41. Gounaris K., Brain A.P.R., Quinn P.J., Williams W.P. 1984. Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim. Biophys. Acta. 766, 198–208.

    Article  CAS  Google Scholar 

  42. Li Z., Wakao S., Fischer B.B., Niyogi K.K. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260.

    Article  CAS  PubMed  Google Scholar 

  43. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. 2007. Photoinhibition of photosystem II under environmental stress. Biochim. Biophis. Acta. 1767, 414–421.

    Article  CAS  Google Scholar 

  44. Tikhonov A.N. 2020. Structure-function relationships in chloroplasts: EPR study of temperature-dependent regulation of photosynthesis, an overview. In Photosynthesis: Molecular approaches to solar energy conversion. Eds. Shen J.R., Satoh K., Allakhverdiev S.I. p. 343–373, https://doi.org/10.1007/978-3-030-67407-6_13

  45. Lazár D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta. 1412, 1–28.

    Article  PubMed  Google Scholar 

  46. Baker N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113.

    Article  CAS  PubMed  Google Scholar 

  47. Adams W.W. III, Demmig-Adams B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Chlorophyll a fuorescence: A signature of photosynthesis. Advances in photosynthesis and respiration. Eds. Papageorgiou G.C., Govindjee G. Springer, Dordrecht, p. 583–604.

    Google Scholar 

  48. Kalaji H.M., Schansker G., Ladle R.J., Goltsev V., Bosa K., Allakhverdiev S.I., Brestic M., Bussotti F., Calatayud A., Dąbrowski P., Elsheery N.I., Ferroni L., Guidi L., Hogewoning S.W, Jajoo A., Misra A.N., Nebauer S.G., Pancaldi S., Penella C., Poli D., Pollastrini M., Romanowska-Duda Z.B., Rutkowska B., Serôdio J., Suresh K., Szulc W., Tambussi E., Yanniccari M., Zivcak M. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 122, 121–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Niyogi K.K., Truong T.B. 2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314.

    Article  CAS  PubMed  Google Scholar 

  50. Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R., Jahns P. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta. 1797, 466–475.

    Article  CAS  PubMed  Google Scholar 

  51. Jahns P., Holzwarth A.R. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta. 1817, 182–193.

    Article  CAS  PubMed  Google Scholar 

  52. Ruban A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage, Plant Physiol. 170, 1903–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murchie E.H., Ruban A.V. 2020. Dynamic non-photochemical quenching in plants: From molecular mechanism to productivity. Plant J. 101, 885-896.

    Article  CAS  PubMed  Google Scholar 

  54. Kuvykin I.V., Ptushenko V.V., Vershoubsky A.V., Tikhonov A.N. 2011. Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2. Biochim. Biophys. Act-a. 1807, 336–347.

    Article  CAS  Google Scholar 

  55. Trubitsin B.V., Vershubskii A.V., Priklonskii V.I., Tikhonov A.N. 2015. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. J. Photochem. Photobiol. B. 152, 400–415.

    Article  CAS  PubMed  Google Scholar 

  56. Stirbet A. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 113, 15–61.

    Article  CAS  PubMed  Google Scholar 

  57. Stirbet A., Govindjee G. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photoch. Photobiol. B. 104, 236–257.

    Article  CAS  Google Scholar 

  58. Schansker G., Tóth S.Z., Strasser R.J. 2006. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim. Biophys. Acta. 1757, 787–797.

    Article  CAS  PubMed  Google Scholar 

  59. Jallet D., Cantrell M., Peers G. 2016. New players for photoprotection and light acclimation. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 133–159.

    Google Scholar 

  60. Tikkanen M., Mekala N.R., Aro E.-M. 2014. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim. Biophis. Acta. 1837, 210–215.

    Article  CAS  Google Scholar 

  61. Strand D.D., Fisher N., Kramer D.M. 2016. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current Research and Future Trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 89–100.

    Google Scholar 

  62. Stiehl H.H., Witt H.T. 1969. Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturforsch. 24b, 1588–1598.

    Article  Google Scholar 

  63. Ryzhikov S.B., Tikhonov A.N. 1988. Regulation of the electron transfer rate in photosynthetic membranes of higher plants. Biofizika (Rus.). 33, 642–646.

    CAS  Google Scholar 

  64. Suslichenko I.S., Trubitsin B.V., Vershubskii A.V., Tikhonov A.N. 2022. The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem. 185, 233–243.

    Article  CAS  PubMed  Google Scholar 

  65. Kalmatskaya O.A., Trubitsin B.V., Suslichenko I.S., Karavaev V.A., Tikhonov A.N. 2020. Electron transport in Tradescantia leaves acclimated to high and low light: Thermoluminescence, PAM‑fluorometry, and EPR studies. Photosynth. Res. 146, 123–141.

    Article  CAS  PubMed  Google Scholar 

  66. Eberhard S., Finazzi G., Wollman F.-A. 2008. The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515.

    Article  CAS  PubMed  Google Scholar 

  67. Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637–1661.

    Article  CAS  PubMed  Google Scholar 

  68. Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 125, 65–94.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Ptushenko for providing us with a lighting device used for growing plants, as well as for valuable advice on various aspects of plant biochemistry and physiology.

Funding

The work was carried out with the financial support of the Russian Science Foundation (project no. 21-74-20047).

Author information

Authors and Affiliations

Authors

Contributions

I.S. Suslichenko conducted fluorescence and EPR measurements; M.A. Benkov, D.A. Kovalishina, and M.O. Petrova participated in long-term experiments on measuring the fluorescent characteristics of leaves; B.V. Trubitsin provided instrumentation and EPR measurements; A.N. Tikhonov developed general work plan, performed the analysis of the literary data, prepared graphs and wrote the paper.

Corresponding author

Correspondence to A. N. Tikhonov.

Ethics declarations

The authors declare that there is no conflict of interest.

This article does not contain a description of research involving humans or using animals as objects.

Additional information

Translated by E. Puchkov

Abbreviations: FIF, fast induction of fluorescence; SIF, slow induction of fluorescence; NPQ, non-photochemical quenching; P700, primary electron donor in photosystem 1; SL and ML, strong light and moderate light; PSA, photosynthetic apparatus; PS1 and PS2, photosystem 1 and photosystem 2; CBC, Calvin–Benson cycle; ETC, cyclic electron transport; Chl, chlorophyll; EPR, electron paramagnetic resonance; ETC, electron-transport chain; PQ, plastoquinone. qE, qZ, and qI, three components of NPQ; FRL, far-red light; WL, white light.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslichenko, I.S., Benkov, M.A., Kovalishina, D.A. et al. Electron Transport in Chloroplast Membranes of Shade-Tolerant and Light Loving Tradescantia Species. Biochem. Moscow Suppl. Ser. A 17, 106–116 (2023). https://doi.org/10.1134/S1990747823020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823020071

Keywords

Navigation