Skip to main content
Log in

Na+,K+-ATPase As a Polyfunctional Protein

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Since the discovery of Na+,K+-ATPase by Jens Skou in 1957, this enzyme has been considered exclusively as a transporter that ensures the active transport of Na+ and K+ ions across the cell plasma membrane; therefore, its structure and mechanism of functioning, as well as its involvement in secondary ion transport systems have been studied in detail. In the present review, the data on the structure and functioning of the enzyme are briefly reviewed. The role of Na+,K+-ATPase as a receptor for cardiotonic steroids (CTS), whose binding to the enzyme initiates a variety of signaling pathways through protein–protein interactions modified also by changes in the intracellular concentration of Na+ and K+ ions by inhibiting the Na+,K+-ATPase transport function and Ca2+, by mediating changes in Na/Ca-exchange activity, was described in more detail. All these provide a variety of CTS effects, including their effect on gene expression, the state of tight junctions, cell adhesion, induction of myocardial hypertrophy, stimulation of free-radical oxygen species generation, and initiation of cell death or survival depending on tissue type. Data on the discovery of endogenous CTS are presented, as well as an analysis of published data indicating that concentrations of endogenous CTS are so low that they are unlikely to cause inhibition of Na+,K+-ATPase. In this connection, the data on the enzyme activation by low doses of CTS are presented, and the idea of a possible summation of the concentrations of various steroids is suggested. Possible directions for the study of multiple functions of Na+,K+-ATPase are discussed in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Skou J.C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta. 23, 394–401.

    Article  CAS  PubMed  Google Scholar 

  2. Wood E.H., Moe G.K. 1938. Studies on the effect of digitalis glycosides on potassium ion loss from the heart. Am. J. Physiol. 123, 219–220.

    Google Scholar 

  3. Schatzmann H.J. 1953. Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helv. Physiol. Pharmacol. Acta. 11, 346–354.

    CAS  PubMed  Google Scholar 

  4. Skou J.C. 1960. Further investigations on a Mg++ + Na+-activated adenosintriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta. 42, 6–23.

    Article  CAS  Google Scholar 

  5. Jørgensen L.P., Skou J.C. 1969. Preparation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidney. Biochem. Biophys. Res. Commun. 37, 39–46.

    Article  PubMed  Google Scholar 

  6. Lingrel J.B. 2010. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na+,K+- ATPase. Annu. Rev. Physiol. 72, 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanco G., Mercer R.W. 1998. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633–F650.

    CAS  PubMed  Google Scholar 

  8. Geering K. 2001. The Functional role of β subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33, 425–438.

    Article  CAS  PubMed  Google Scholar 

  9. Clausen M.V., Hilbers F., Poulsen H. 2017. The structure and function of the Na+,K+-ATPase isoforms in health and disease. Front. Physiol. 8, 371.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Forbush B., Kaplan J.H., Hoffman J.F. 1978. Characterization of a new photoaffinity derivative of ouabain: Labeling of the large polypeptide and of a proteolipid component of the Na,K-ATPase. Biochemistry. 17, 3667–3676.

    Article  CAS  PubMed  Google Scholar 

  11. Geering K. 2006. FXYD proteins: New regulators of Na-K-ATPase. Am. J. Physiol. Renal. Physiol. 290, F241-250.

    Article  CAS  PubMed  Google Scholar 

  12. Cheung J.Y., Zhang X.-Q., Song J., Gao E., Chan T.O., Rabinowitz J.E., Koch W.J., Feldman A.M., Wang J. 2013. Coordinated regulation of cardiac Na+/Ca2+ exchanger and Na+-K+-ATPase by phospholemman (FXYD1). Adv. Exp. Med. Biol. 961, 175–190.

    Article  CAS  PubMed  Google Scholar 

  13. Ahlers B.A., Zhang X.-Q., Moorman J.R., Rothblum L.I., Carl L.L., Song J., Wang J., Geddis L.M., Tucker A.L., Mounsey J.P., Cheung J.Y. 2005. Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman. J. Biol. Chem. 280, 19875–19882.

    Article  CAS  PubMed  Google Scholar 

  14. Lingrel J.B., Kuntzweiler T. 1994. Na+,K+-ATPase. J. Biol. Chem. 269, 19 659–19 662.

    Article  Google Scholar 

  15. Albers R.W. 1967. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756.

    Article  CAS  PubMed  Google Scholar 

  16. Post R.L., Hegyvary C., Kume S. 1972. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540.

    Article  CAS  PubMed  Google Scholar 

  17. Clarke R.J. 2009. Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. Eur. Biophys. J. 39, 3.

    Article  CAS  PubMed  Google Scholar 

  18. Dyla M., Kjærgaard M., Poulsen H., Nissen P. 2020. Structure and mechanism of P-type ATPase ion pumps. Annu. Rev. Biochem. 89, 583–603.

    Article  CAS  PubMed  Google Scholar 

  19. Burchell H.B. 1976. Coincidental bicentennials: United States and foxglove therapy. J. Hist. Med. Allied Sci. 31, 292–306.

    Article  CAS  PubMed  Google Scholar 

  20. Krickler D.M. 1985. The foxglove,“The old woman from Shropshire” and William Withering. J. Am. Coll. Cardiol. 5 (5), 3A–9A.

    Article  Google Scholar 

  21. Patocka J., Nepovimova E., Wu W., Kuca K. 2020. Digoxin: Pharmacology and toxicology—A review. Environ. Toxicol. Pharmacol. 79, 103400.

    Article  CAS  PubMed  Google Scholar 

  22. Pavlovic D. 2019. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium. 86, 102156.

    Article  PubMed  CAS  Google Scholar 

  23. Lopachev A.V., Abaimov D.A., Fedorova T.N., Lopacheva O.M., Akkuratova N.V., Akkuratov E.E. 2018. Cardiotonic steroids as potential endogenous regulators in the nervous system. Neurochem. J. 12, 1–8.

    Article  CAS  Google Scholar 

  24. Hamlyn J.M., Blaustein M.P., Bova S., DuCharme D.W., Harris D.W., Mandel F., Mathews W.R., Ludens J.H. 1991. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA. 88, 6259–6263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orlov S.N., Tverskoi A.M., Sidorenko S.V., Smolyaninova L.V., Lopina O.D., Dulin N.O., Klimanova E.A. 2020. Na+,K+-ATPase as a target for endogenous cardiotonic steroids: What’s the evidence? Genes Dis. 8, 259–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. ZhuGe R., DeCrescenzo V., Sorrentino V., Lai F.A., Tuft R.A., Lifshitz L.M., Lemos J.R., Smith C., Fogarty K.E., Walsh J.V. 2006. Syntillas release Ca2+ at a site different from the microdomain where exocytosis occurs in mouse chromaffin cells. Biophys. J. 90, 2027–2037.

    Article  PubMed  CAS  Google Scholar 

  27. Kometiani P., Tian J., Nabih Z., Gick G., Xie Z. 2000. Regulation of Na/K-ATPase β1-subunit gene expression by ouabain and other hypertrophic stimuli in neonatal rat cardiac myocytes. Mol. Cell Biochem. 215, 65–72.

    Article  CAS  PubMed  Google Scholar 

  28. Hosoi R., Matsuda T., Asano S., Nakamura H., Hashimoto H., Takuma K., Baba A. 1997. Isoform-specific up-regulation by ouabain of Na+,K+-ATPase in cultured rat astrocytes. J. Neurochem. 69, 2189–2196.

    Article  CAS  PubMed  Google Scholar 

  29. Xue Z., Li B., Gu L., Hu X., Li M., Butterworth R.F., Peng L. 2010. Increased Na, K-ATPase α2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem. Int. 57, 395–403.

    Article  CAS  PubMed  Google Scholar 

  30. Xie Z., Askari A. 2002. Na+/K+-ATPase as a signal transducer. Eur. J. Biochem. 269, 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  31. Nie Y., Bai F., Chaudhry M.A., Pratt R., Shapiro J.I., Liu J. 2020. The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci. Rep. 10, 6006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pratt R.D., Brickman C.R., Cottrill C.L., Shapiro J.I., Liu J. 2018. The Na/K-ATPase signaling: From specific ligands to general reactive oxygen species. Int. J. Mol. Sci. 19, 2600.

    Article  PubMed Central  CAS  Google Scholar 

  33. Haas M., Askari A., Xie Z. 2000. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chemistry. 275, 27 832–27 837.

    Article  Google Scholar 

  34. Blaustein M.P., Juhaszova M., Golovina V.A. 1998. The cellular mechanism of action of cardiotonic steroids: A new hypothesis. Clin. Exp. Hypertens. 20, 691–703.

    Article  CAS  PubMed  Google Scholar 

  35. Blaustein M.P., Hamlyn J.M. 2020. Ouabain, endogenous ouabain and ouabain-like factors: The Na+ pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium. 86, 102159.

    Article  CAS  PubMed  Google Scholar 

  36. Lichtstein D., Samuelov S., Bourrit A. 1985. Characterization of the stimulation of neuronal Na+, K+-ATPase activity by low concentrations of ouabain. Neurochem. Int. 7, 709–715.

    Article  CAS  PubMed  Google Scholar 

  37. Askari A. 2019. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect. 7, e00505.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tverskoi A.M., Poluektov Y.M., Klimanova E.A., Mitkevich V.A., Makarov A.A., Orlov S.N., Petrushanko I.Y., Lopina O.D. 2021. Depth of the steroid core location determines the mode of Na+,K+-ATPase inhibition by cardiotonic steroids. Int. J. Mol. Sci. 22, 13268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rocha S.C., Pessoa M.T.C., Neves L.D.R., Alves S.L.G., Silva L.M., Santos H.L., Oliveira S.M.F., Taranto A.G., Comar M., Gomes I.V., Santos F.V., Paixão N., Quintas L.E.M., Noël F., Pereira A.F., Tessis A.C.S.C., Gomes N.L.S., Moreira O.C., Rincon-Heredia R., Varotti F.P., Blanco G., Villar J.A.F.P., Contreras R.G., Barbosa L.A. 2014. 21-Benzylidene digoxin: A proapoptotic cardenolide of cancer cells that up-regulates Na+,K+-ATPase and epithelial tight junctions. PLoS One. 9, e108776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Askari A. 2019. The other functions of the sodium pump. Cell Calcium. 84, 102105.

    Article  CAS  PubMed  Google Scholar 

  41. Weigand K.M., Swarts H.G.P., Fedosova N.U., Russel F.G.M., Koenderink J.B. 2012. Na+,K+-ATPase activity modulates Src activation: A role for ATP/ADP ratio. Biochim. Biophys. Acta. 1818, 1269–1273.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan Z., Cai T., Tian J., Ivanov A.V., Giovannucci D.R., Xie Z. 2005. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell. 16, 4034–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Agalakova N.I., Kolodkin N.I., Adair C.D., Trashkov A.P., Bagrov A.Y. 2021. Preeclampsia: Cardiotonic steroids, fibrosis, Fli1 and hint to carcinogenesis. Int. J. Mol. Sci. 22, 1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bagrov A.Y. 2021. High salt is a risk factor for cardiovascular and kidney diseases. What is next, fibrosis? J. Hypertens. 39, 1309–1310.

    Article  CAS  PubMed  Google Scholar 

  45. Liu L., Zhao X., Pierre S.V., Askari A. 2007. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am. J. Physiol. Cell Physiol. 293, 1489–1497.

    Article  CAS  Google Scholar 

  46. Wu J., Akkuratov E.E., Bai Y., Gaskill C.M., Askari A., Liu L. 2013. Cell signaling associated with Na+/K+-ATPase: Activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 52, 9059–9067.

    Article  CAS  PubMed  Google Scholar 

  47. Aizman O., Uhlén P., Lal M., Brismar H., Aperia A. 2001. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc. Natl. Acad. Sci. USA. 98, 13420–13424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Desfrere L., Karlsson M., Hiyoshi H., Malmersjö S., Nanou E., Estrada M., Miyakawa A., Lagercrantz H., Manira A.E., Lal M., Uhlén P. 2009. Na+,K+-ATPase signal transduction triggers CREB activation and dendritic growth. Proc. Natl. Acad. Sci. USA. 106, 2212–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopina O.D., Tverskoi A.M., Klimanova E.A., Sidorenko S.V., Orlov S.N. 2020. Ouabain-induced cell death and survival. Role of α1-Na+,K+-ATPase-mediated signaling and [Na+]i/[K+]i-dependent gene expression. Front. Physiol. 11, 1060.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akimova O.A., Lopina O.D., Rubtsov A.M., Gekle M., Tremblay J., Hamet P., Orlov S.N. 2009. Death of ouabain-treated renal epithelial cells: Evidence for p38 MAPK-mediated \({{{\text{Na}}_{{\text{i}}}^{ + }} \mathord{\left/ {\vphantom {{{\text{Na}}_{{\text{i}}}^{ + }} {{\text{K}}_{{\text{i}}}^{ + }}}} \right. \kern-0em} {{\text{K}}_{{\text{i}}}^{ + }}}\)-independent signaling. Apoptosis. 14, 1266.

    Article  CAS  PubMed  Google Scholar 

  51. Triana-Martínez F., Picallos-Rabina P., Silva-Álvarez S.D., Pietrocola F., Llanos S., Rodilla V., Soprano E., Pedrosa P., Ferreirós A., Barradas M., Hernández-González F., Lalinde M., Prats N., Bernadó C., González P., Gómez M., Ikonomopoulou M.P., Fernández-Marcos P.J., García-Caballero T., Pino P. del, Arribas J., Vidal A., González-Barcia M., Serrano M., Loza M.I., Domínguez E., Collado M. 2019. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10, 1–12.

    Article  CAS  Google Scholar 

  52. Shatrova A., Pugovkina N., Domnina A., Nikolsky N., Marakhova I. 2022. Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem cells. Research Square. https://doi.org/10.21203/rs.3.rs-1087662/v1

    Book  Google Scholar 

  53. Jacobs M.M., Pienta R.J. 1991. In: Vitamins and minerals in the prevention and treatment of cancer. Ed Jacobs M.M. Boca Raton: CRC Press, p. 228–245.

  54. Brown H.D. 1966. A characterization of the ouabain sensitivity of heart microsomal ATPase. Biochim. Biophys. Acta. 120, 162–165.

    Article  CAS  PubMed  Google Scholar 

  55. Palmer R.F., Lasseter K.C., Melvin S.L. 1966. Stimulation of Na+ and K+ dependent adenosine triphosphatase by ouabain. Arch. Biochem. Biophys. 113, 629–633.

    Article  CAS  PubMed  Google Scholar 

  56. Godfraind T., Ghysel-Burton J. 1977. Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature. 265, 165–166.

    Article  CAS  PubMed  Google Scholar 

  57. Hougen T.J., Spicer N., Smith T.W. 1981. Stimulation of monovalent cation active transport by low concentrations of cardiac glycosides. Role of catecholamines. J. Clin. Invest. 68, 1207–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tverskoi A.M., Sidorenko S.V., Klimanova E.A., Akimova O.A., Smolyaninova L.V., Lopina O.D., Orlov S.N. 2016. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. Biochemistry (Mosc). 81, 876–883.

    Article  CAS  Google Scholar 

  59. Klimanova E.A., Fedorov D.A., Sidorenko S.V., Abramicheva P.A., Lopina O.D., Orlov S.N. 2020. Ouabain and marinobufagenin: physiological effects on human epithelial and endothelial cells. Biochemistry (Mosc). 85, 507–515.

    Article  CAS  Google Scholar 

  60. Saunders R., Scheiner-Bobis G. 2004. Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. Eur. J. Biochem. 271, 1054–1062.

    Article  CAS  PubMed  Google Scholar 

  61. Aydemir-Koksoy A., Abramowitz J., Allen J.C. 2001. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem. 276, 46 605–46 611.

    Article  CAS  Google Scholar 

  62. Khundmiri S.J., Metzler M.A., Ameen M., Amin V., Rane M.J., Delamere N.A. 2006. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am. J. Physiol. Cell Physiol. 291, C1247–C1257.

    Article  CAS  PubMed  Google Scholar 

  63. Khundmiri S.J., Salyer S.A., Farmer B., Qipshidze-Kelm N., Murray R.D., Clark B.J., Xie Z., Pressley T.A., Lederer E.D. 2014. Structural determinants for the ouabain-stimulated increase in Na–K ATPase activity. Biochim. Biophys. Acta. 1843, 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  64. Holthouser K.A., Mandal A., Merchant M.L., Schelling J.R., Delamere N.A., Valdes R.R., Tyagi S.C., Lederer E.D., Khundmiri S.J. 2010. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am. J. Physiol. Renal Physiol. 299, F77–F90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoneda J.S., Scanavachi G., Sebinelli H.G., Borges J.C., Barbosa L.R.S., Ciancaglini P., Itri R. 2016. Multimeric species in equilibrium in detergent-solubilized Na+,K+-ATPase. Int. J. Biol. Macromol. 89, 238–245.

    Article  CAS  PubMed  Google Scholar 

  66. Petrushanko I.Y., Mitkevich V.A., Anashkina A.A., Klimanova E.A., Dergousova E.A., Lopina O.D., Makarov A.A. 2014. Critical role of γ-phosphate in structural transition of Na+,K+-ATPase upon ATP binding. Sci. Rep. 4, 5165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grimaldi S., Pascale E., Pozzi D., D’Onofrio M., Giganti M.G., Verna R. 1988. Effect of ouabain binding on the fluorescent properties of the Na+/K+-ATPase. Biochim. Biophys. Acta. 944, 13–18.

    Article  CAS  PubMed  Google Scholar 

  68. Koltsova S.V., Trushina Y., Haloui M., Akimova O.A., Tremblay J., Hamet P., Orlov S.N. 2012. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: Evidence for Ca2+ i-independent excitation-transcription coupling. PLoS One. 7, e38032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Klimanova E.A., Sidorenko S.V., Smolyaninova L.V., Kapilevich L.V., Gusakova S.V., Lopina O.D., Orlov S.N. 2019. Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: Physiological and pathophysiological implications. Curr. Top. Membr. 83, 107–149.

    Article  PubMed  CAS  Google Scholar 

  70. Fedorov D.A., Sidorenko S.V., Yusipovich A.I., Parshina E.Y., Tverskoi A.M., Abramicheva P.A., Maksimov G.V., Orlov S.N., Lopina O.D., Klimanova E.A. 2021. \({{{\text{Na}}_{{\text{i}}}^{ + }} \mathord{\left/ {\vphantom {{{\text{Na}}_{{\text{i}}}^{ + }} {{\text{K}}_{{\text{i}}}^{ + }}}} \right. \kern-0em} {{\text{K}}_{{\text{i}}}^{ + }}}\) imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl. Heliyon7, e08088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klimanova E.A., Sidorenko S.V., Tverskoi A.M., Shiyan A.A., Smolyaninova L.V., Kapilevich L.V., Gusakova S.V., Maksimov G.V., Lopina O.D., Orlov S.N. 2019. Search for intracellular sensors involved in the functioning of monovalent cations as secondary messengers. Biochemistry (Mosc.). 84, 1280–1295.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-75-10 009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. D. Lopina or E. A. Klimanova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Klimanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopina, O.D., Bukach, O.V., Sidorenko, S.V. et al. Na+,K+-ATPase As a Polyfunctional Protein. Biochem. Moscow Suppl. Ser. A 16, 207–216 (2022). https://doi.org/10.1134/S1990747822040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822040055

Keywords:

Navigation