Skip to main content
Log in

Effect of Glucocorticoid Deflazacort on Respiration and Calcium-Dependent Permeability of Rat Liver Mitochondria

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

This study examines the effect of glucocorticoid deflazacort on the functioning of rat liver mitochondria. Deflazacort at concentrations up to 100 μM has been shown to have no effect on respiration and oxidative phosphorylation of rat liver mitochondria, energized both in the presence of glutamate/malate (substrates of complex I of the respiratory chain) and succinate (substrate of complex II of the respiratory chain), and also does not affect activity of complexes of the respiratory chain of organelles. It was found that deflazacort does not affect the permeability of the inner membrane of liver mitochondria, but reduces the resistance of organelles to the induction of calcium-dependent MPT pore. In addition, we have found that this glucocorticoid is able to induce a decrease in the level of mitochondrial NAD(P)H, as well as inhibit the production of hydrogen peroxide by organelles. The paper discusses how the effects of deflazacort on mitochondrial function may be related to the therapeutic effects of this agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Brillon D.J., Zheng B., Campbell R.G., Matthews D.E. 1995. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am. J. Physiol. 268 (3), 501–513.

    Google Scholar 

  2. Gregory M.C., Duval D., Meyer P. 1976. Changes in cardiac and hepatic glucocorticoid receptors after adrenalectomy. Clin. Sci. Mol. Med. 51, 487–493.

    CAS  PubMed  Google Scholar 

  3. Demonacos C., Tsawdaroglou N.C., Djordjevic-Markovic R., Papalopoulou M., Galanopoulos V., Papadogeorgaki S., Sekeris C.E. 1993. Import of the glucocorticoid receptor into rat liver mitochondria in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 46, 401–413.

    Article  CAS  Google Scholar 

  4. Tsiriyotis C., Spandidos D.A., Sekeris C.E. 1997. The mitochondrion as a primary site of action of glucocorticoids: Mitochondrial nucleotide sequences, showing similarity to hormone response elements, confer dexamethasone inducibility to chimaeric genes transfected in LATK-cells. Biochem. Biophys. Res. Commun. 235, 349–354.

    Article  CAS  Google Scholar 

  5. Lee S.R., Kim H.K., Song I.S., Youm J., Dizon L.A., Jeong S.H., Ko T.H., Heo H.J., Ko K.S., Rhee B.D., Kim N., Han J. 2013. Glucocorticoids and their receptors: Insights into specific roles in mitochondria. Prog. Biophys. Mol. Biol. 112 (1–2), 44–54.

    Article  CAS  Google Scholar 

  6. Kittas C., Chaniotis F.J., Antonakopoulos G., Papacharalampous N.X. 1984. The effects of bilateral adrenalectomy on the fine structure of the rat myocardium. Zentralbl. Allg. Pathol. 129, 225–229.

    CAS  PubMed  Google Scholar 

  7. Djouadi F., Bastin J., Gilbert T., Rotig A., Rustin P., Merlet-Benichou C. 1994. Mitochondrial biogenesis and development of respiratory chain enzymes in kidney cells: Role of glucocorticoids. Am. J. Physiol. 267, 245–254.

    Article  Google Scholar 

  8. Prieur B., Bismuth J., Delaval E. 1998. Effects of adrenal steroid hormones on mitochondrial maturation during the late fetal period. Eur. J. Biochem. 252, 194–199.

    Article  CAS  Google Scholar 

  9. Goffart S., Wiesner R.J. 2003. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp. Physiol. 88, 33–40.

    Article  CAS  Google Scholar 

  10. Desquiret V., Gueguen N., Malthiery Y., Ritz P., Simard G. 2008. Mitochondrial effects of dexamethasone imply both membrane and cytosolic-initiated pathways in HepG2 cells. Int. J. Biochem. Cell Biol. 40, 1629–1641.

    Article  CAS  Google Scholar 

  11. Morin C., Zini R., Simon N., Charbonnier P., Tillement J. P., Le Louet H. 2000. Low glucocorticoid concentrations decrease oxidative phosphorylation of isolated rat brain mitochondria: An additional effect of dexamethasone. Fundam. Clin. Pharmacol. 14 (5), 493–500.

    Article  CAS  Google Scholar 

  12. Simon N., Jolliet P., Morin C., Zini R., Urien S., Tillement J.P. 1998. Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett. 435, 25–28.

    Article  CAS  Google Scholar 

  13. Katyare S.S., Balasubramanian S., Parmar D.V. 2003. Effect of corticosterone treatment on mitochondrial oxidative energy metabolism in developing rat brain. Exp. Neurol. 183, 241–248.

    Article  CAS  Google Scholar 

  14. Fujita C., Ichikawa F., Teratani T., Murakami G., Okada T., Shinohara M., Kawato S., Ohta Y. 2009. Direct effects of corticosterone on ATP production by mitochondria from immortalized hypothalamic GT1-7 neurons. J. Steroid Biochem. Mol. Biol. 117, 50–55.

    Article  CAS  Google Scholar 

  15. Du J., Wang Y., Hunter R., Wei Y., Blumenthal R., Falke C., Khairova R., Zhou R., Yuan P., Machado-Vieira R., McEwen B.S., Manji H.K. 2009. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA. 106, 3543–3548.

    Article  CAS  Google Scholar 

  16. Markham A., Bryson H.M. 1995. Deflazacort. A review of its pharmacological properties and therapeutic efficacy. Drugs. 50 (2), 317–333.

    Article  CAS  Google Scholar 

  17. Bylo M., Farewell R., Coppenrath V.A., Yogaratnam D. 2020. A review of deflazacort for patients with Duchenne muscular dystrophy. Ann. Pharmacother. 54 (8), 788–794.

    Article  Google Scholar 

  18. Bello L., Gordish-Dressman H., Morgenroth L.P., Henricson E.K., Duong T., Hoffman E.P., Cnaan A., McDonald C.M. 2015. Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne natural history study. Neurology. 85 (12), 1048–1055.

    Article  CAS  Google Scholar 

  19. Griggs R.C., Miller J.P., Greenberg C.R., Fehlings D.L., Pestronk A., Mendell J.R., Moxley R.T., King W., Kissel J.T., Cwik V., Vanasse M., Florence J.M., Pandya S., Dubow J.S., Meyer J.M. 2016. Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy. Neurology. 87 (20), 2123–2131.

    Article  CAS  Google Scholar 

  20. McDonald C.M., Henricson E.K., Abresch R.T., Duong T., Joyce N.C., Hu F., Clemens P.R., Hoffman E.P., Cnaan A., Gordish-Dressman H. 2018. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: A prospective cohort study. Lancet. 391 (10119), 451–461.

    Article  CAS  Google Scholar 

  21. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta. Mol. Basis Dis. 1866 (5), 165674.

  22. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Belosludtseva N.V., Belosludtsev K.N. 2020. The effect of deflazacort treatment on the functioning of skeletal muscle mitochondria in Duchenne muscular dystrophy. Int. J. Mol. Sci. 21 (22), 8763.

    Article  CAS  Google Scholar 

  23. Dubinin M.V., Samartsev V.N., Stepanova A.E., Khoroshavina E.I., Penkov N.V., Yashin V.A., Starinets V.S., Mikheeva I.B., Gudkov S.V., Belosludtsev K.N. 2018. Membranotropic effects of ω‑hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization. J. Bioenerg. Biomembr. 50 (5), 391–401.

    Article  CAS  Google Scholar 

  24. Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229.

    Article  CAS  Google Scholar 

  25. Chance B., Williams G.R. 1955. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217 (1), 383–393.

    Article  CAS  Google Scholar 

  26. Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405.

    Article  Google Scholar 

  27. Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246.

    Article  CAS  Google Scholar 

  28. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–121.

    Article  CAS  Google Scholar 

  29. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Belosludtsev K.N. 2020. Transport of Ca2+ and Ca2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy. Biochim. Biophys. Acta Bioenergetics. 1861 (10), 148250.

  30. Symons A.M., Lewis D.A., Ancill R.J. 1974. The actions of anti-inflammatory steroids on isolated rat liver mitochondrial function. J. Ster. Biochem. 5 (7), 639-644.

    Article  CAS  Google Scholar 

  31. Pandya J.D., Agarwal N.A., Katyare S.S. 2004. Effect of dexamethasone treatment on oxidative energy metabolism in rat liver mitochondria during postnatal developmental periods. Drug Chem. Toxicol. 27 (4), 389–403.

    Article  CAS  Google Scholar 

  32. Ribas V., García-Ruiz C., Fernández-Checa J. C. 2014. Glutathione and mitochondria. Front. Pharmacol. 5, 151.

    Article  Google Scholar 

  33. Chalmers S., Nicholls D.G. 2003. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062–19070.

    Article  CAS  Google Scholar 

  34. Rasola A., Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 50, 222–233.

    Article  CAS  Google Scholar 

  35. Belosludtsev K.N., Dubinin M.V., Belosludtseva N.V., Mironova G.D. 2019. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry. 6 (84), 593–607

    Google Scholar 

  36. Malhi H., Guicciardi M.E., Gores G.J. 2010. Hepatocyte death: A clear and present danger. Physiol. Rev. 90, 1165–1194.

    Article  CAS  Google Scholar 

  37. Campbell P.I., Al-Nasser I.A. 1995. Dexamethasone inhibits inorganic phosphate stimulated Ca2+-dependent damage of isolated rat liver and renal cortex mitochondria. Comp. Biochem. Physiol. 111, 221–225.

    Article  CAS  Google Scholar 

  38. Nieminen A.L., Byrne A.M., Herman B., Lemasters J.J. 1997. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am. J. Physiol. 272 (4), 1286–1294.

    Article  Google Scholar 

  39. Kowaltowski A.J., Castilho R.F., Vercesi A.E. 2001. Mitochondrial permeability transition and oxidative stress. FEBS letters. 495 (1–2), 12–15.

    Article  CAS  Google Scholar 

  40. Bernardes C.F., Meyer-Fernandes J.R., Basseres D.S., Castilho R.F., Vercesi A.E. 1994. Ca2+-dependent permeabilization of the inner mitochondrial membrane by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Biochim. Biophys. Acta. 1188 (1–2), 93–100.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by Russian Science Foundation (project no. 20-75-10 006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Mari State University.

Additional information

Translated by M. Dubinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Semenova, A.A., Khoroshavina, E.I. et al. Effect of Glucocorticoid Deflazacort on Respiration and Calcium-Dependent Permeability of Rat Liver Mitochondria. Biochem. Moscow Suppl. Ser. A 15, 156–166 (2021). https://doi.org/10.1134/S1990747821020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821020033

Keywords

Navigation