Skip to main content

Recording and Hodgkin-Huxley Kinetic Analysis of Voltage-Gated Ion Channels in Nucleated Patches

  • Protocol
  • First Online:
Advanced Patch-Clamp Analysis for Neuroscientists

Part of the book series: Neuromethods ((NM,volume 113))

  • 1661 Accesses

Abstract

The patch-clamp technique is widely used to measure and characterize ion currents flowing through the cell membrane. Various configurations can be used according to the research hypothesis. A relatively new configuration of the patch-clamp technique is the outside-out nucleated patch, which allows measuring somatic currents in voltage-clamp recordings due to a reduction in technical issues. Characterization of ionic currents is mostly based on the Hodgkin-Huxley model, a detailed mathematical and biophysical model of membrane excitability. This chapter describes voltage-clamp experiments step by step, from preparation and performing outside-out nucleated patch experiments through to the Hodgkin-Huxley analysis of the recorded data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375(2):219–228

    Article  CAS  PubMed  Google Scholar 

  2. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414(5):600–612

    Article  CAS  PubMed  Google Scholar 

  3. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423(5-6):511–518

    Article  CAS  PubMed  Google Scholar 

  4. Sigworth F (1995) Design of the EPC-9, a computer-controlled patch-clamp amplifier. 1. Hardware. J Neurosci Methods 56(2):195–202

    Article  Google Scholar 

  5. Johnston D, Wu SM-s (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

  6. Sigworth FJ, Affolter H, Neher E (1995) Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J Neurosci Methods 56(2):203–215

    Article  CAS  PubMed  Google Scholar 

  7. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaefer AT, Helmstaedter M, Schmitt AC, Bar-Yehuda D, Almog M, Ben-Porat H, Sakmann B, Korngreen A (2007) Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats. J Physiol 579(Pt 3):737–752

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophys J 84(6):3508–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bar-Yehuda D, Korngreen A (2008) Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. J Neurophysiol 99(3):1127–1136

    Article  PubMed  Google Scholar 

  12. Chen X, Whissell P, Orser BA, MacDonald JF (2011) Functional modifications of acid-sensing ion channels by ligand-gated chloride channels. PLoS One 6(7):e21970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim NK, Robinson HP (2011) Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. Eur J Neurosci 34(2):199–212

    Article  PubMed  Google Scholar 

  14. Sather W, Dieudonne S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 450:643–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Almog M, Korngreen A (2009) Characterization of voltage-gated Ca2+ conductances in layer 5 neocortical pyramidal neurons from rats. PLoS One 4(4), e4841

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bekkers JM (2000) Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525(Pt 3):593–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung SC, Eun SY (2012) Sustained K+ outward currents are sensitive to intracellular heteropodatoxin2 in CA1 neurons of organotypic cultured hippocampi of rats. Kr J Physiol Pharmacol 16(5):343–348

    Article  CAS  Google Scholar 

  18. Khurana S, Liu Z, Lewis AS, Rosa K, Chetkovich D, Golding NL (2012) An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J Neurosci 32(8):2814–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525(Pt 3):621–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin YC, Liu YC, Huang YY, Lien CC (2010) High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus. PLoS One 5(9)

    Google Scholar 

  21. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veruki ML, Oltedal L, Hartveit E (2010) Electrical coupling and passive membrane properties of AII amacrine cells. J Neurophysiol 103(3):1456–1466

    Article  PubMed  Google Scholar 

  23. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  CAS  PubMed  Google Scholar 

  24. Barry PH, Diamond JM (1970) Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes. J Membr Biol 3(1):93–122

    Article  CAS  PubMed  Google Scholar 

  25. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121(2):101–117

    Article  CAS  PubMed  Google Scholar 

  26. Costantin JL, Qin N, Waxham MN, Birnbaumer L, Stefani E (1999) Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; partial reversal by protein kinase A. Pflugers Arch 437(6):888–894

    Article  CAS  PubMed  Google Scholar 

  27. Josephson IR, Varadi G (1996) The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J 70(3):1285–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belles B, Hescheler J, Trautwein W, Blomgren K, Karlsson JO (1988) A possible physiological role of the Ca2+-dependent protease calpain and its inhibitor calpastatin on the Ca2+ current in guinea pig myocytes. Pflugers Arch 412(5):554–556

    Article  CAS  PubMed  Google Scholar 

  29. Romanin C, Grosswagen P, Schindler H (1991) Calpastatin and nucleotides stabilize cardiac calcium channel activity in excised patches. Pflugers Arch 418(1-2):86–92

    Article  CAS  PubMed  Google Scholar 

  30. Ikeda SR (1991) Double-pulse calcium channel current facilitation in adult rat sympathetic neurones. J Physiol 439:181–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scamps F, Valentin S, Dayanithi G, Valmier J (1998) Calcium channel subtypes responsible for voltage-gated intracellular calcium elevations in embryonic rat motoneurons. Neuroscience 87(3):719–730

    Article  CAS  PubMed  Google Scholar 

  32. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gurkiewicz M, Korngreen A (2006) Recording, analysis, and function of dendritic voltage-gated channels. Pflugers Arch 453(3):283–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the German-Israeli Foundation to AK (#1091-27.1/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Korngreen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Almog, M., Korngreen, A. (2016). Recording and Hodgkin-Huxley Kinetic Analysis of Voltage-Gated Ion Channels in Nucleated Patches. In: Korngreen, A. (eds) Advanced Patch-Clamp Analysis for Neuroscientists. Neuromethods, vol 113. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3411-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3411-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3409-6

  • Online ISBN: 978-1-4939-3411-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics