Skip to main content

Advertisement

Log in

Morphofunctional Changes in the Brain Nervous Tissue of 5xFAD Transgenic Mice

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In the present study, in modeling the pathogenesis of Alzheimer’s disease in 5xFAD transgenic mice, a comparative analysis of structural and ultrastructural changes in the nervous tissue of the olfactory bulbs, hippocampus, and entorhinal cortex was performed; in addition, the distribution of the main amyloid-degrading neuropeptidase, neprilysin (NEP), relative to wild-type mice was examined. The investigation of the structure of the nervous tissue showed that the death of brain neurons increased in transgenic animals characterized by increased production of the amyloid peptide Aβ. As a result, connections between neurons were interrupted and the neural network become disrupted. Our electron-microscopy examination revealed a reduced density of synaptic contacts and dendritic spines, local lesions of the nervous tissue, and the appearance of autophagolysosomes in the neuropil tissue of these structures in 5xFAD mice. Signs indicating increased neurodegenerative processes compared with wild-type mice were visible. In 5xFAD mice, the distribution of amyloid-degrading peptidase NEP in the entorhinal cortex and hippocampus was altered, and there was a decreased intensity of its staining in the entorhinal cortex. In transgenic mice aged 6 months, memory impairment was observed in the recognition test of new objects relative to wild-type mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Antunes, M. and Biala, G., The novel object recognition memory: neurobiology, test procedure, and its modifications, Cogn. Process., 2021, vol. 13, p. 93. http://doi.org/10.1007/s10339-011-0430-z

    Article  Google Scholar 

  2. Cai, Y., Xue, Z.Q., Zhang, X.M., Li, M.B., Wang, H., Luo, X.G., Cai, H., and Yan, X.X., An age-related axon terminal pathology around the first olfactory relay that involves amyloidogenic protein overexpression without plaque formation, Neuroscience, 2012, vol. 215, p. 160. http://doi.org/10.1016/j.neuroscience.2012.04.043

    Article  CAS  Google Scholar 

  3. Cohen, C.J. and Stackman, R.W., Jr., Assessing rodent hippocampal involvement in the novel object recognition task. A review, Behav. Brain Res., 2015, vol. 285, p. 105. http://doi.org/10.1016/j.bbr.2014.08.002

    Article  Google Scholar 

  4. Devi, L. and Ohno, M., Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice, PLoS One, 2010b, vol. 5, article ID e12974. http://doi.org/10.1371/journal.pone.0012974

  5. Devi, L., Alldred, M.J., Ginsberg, S.D., and Ohno, M., Sex- and brain region-specific acceleration of β-amyloidogenesis following behavioral stress in a mouse model of Alzheimer’s disease, Mol. Brain, 2010a, vol. 3, p. 34. http://doi.org/10.1186/1756-6606-3-34

    Article  Google Scholar 

  6. Eimer, W.A. and Vassar, R., Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation, Mol. Neurodegener., 2013, vol. 8, p. 2. http://doi.org/10.1186/1750-1326-8-2

    Article  CAS  Google Scholar 

  7. Fisk, L., Nalivaeva, N.N., Boyle, J.P., Peers, C.S., and Turner, A.J., Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes, Neurochem. Res., 2007, vol. 32, p. 1741. http://doi.org/10.1007/s11064-007-9349-2

    Article  CAS  Google Scholar 

  8. Gaudel, F., Stephan, D., Landel, V., Sicard, G., Féron, F., and Guiraudie-Capraz, G., Expression of the cerebral olfactory receptors Olfr110/111 and Olfr544 is altered during aging and in Alzheimer’s disease-like mice, Mol. Neurobiol., 2018, vol. 56, p. 2057. http://doi.org/10.1007/s12035-018-1196-4

    Article  Google Scholar 

  9. Hammond, R.S., Tull, L.E., and Stackman, R.W., On the delay-dependent involvement of the hippocampus in object recognition memory, Neurobiol. Learn. Mem., 2004, vol. 82, p. 26. http://doi.org/10.1016/j.nlm.2004.03.005

    Article  Google Scholar 

  10. Hüttenrauch, M., Baches, S., Gerth, J., Bayer, T.A., Weggen, S., and Wirths, O., Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer’s disease, J. Alzheimers Dis., 2015, vol. 44, p. 1291 http://doi.org/10.3233/JAD-142463

    Article  Google Scholar 

  11. Kanno, T., Tsuchiya, A., and Nishizaki, T., Hyperphosphorylation of Tau at Ser396 occurs in the much earlier stage than appearance of learning and memory disorders in 5XFAD mice, Behav. Brain Res., 2014, vol. 274, p. 302. http://doi.org/10.1016/j.bbr.2014.08.034

    Article  CAS  Google Scholar 

  12. Kimura, R. and Ohno, M., Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model, Neurobiol. Dis., 2009, vol. 33, p. 229. http://doi.org/10.1016/j.nbd.2008.10.006

    Article  CAS  Google Scholar 

  13. Lane, C.A., Hardy, J., and Schott, J.M., Alzheimer’s disease, Eur. J. Neurol., 2018, vol. 25, p. 59. http://doi.org/10.1111/ene.13439

    Article  CAS  Google Scholar 

  14. Maarouf, C.L., Kokjohn, T.A., Whiteside, C.M., Ma-cias, M.P., Kalback, W.M., Sabbagh, M.N., Beach, T.G, Vassar, R., and Roher, A.E., Molecular differences and similarities between Alzheimer’s disease and the 5XFAD transgenic mouse model of amyloidosis, Biochem. Insights, 2013, vol. 6, p. 1. http://doi.org/10.4137/BCI.S13025

    Article  Google Scholar 

  15. Melnik, S.A., Gladysheva, O.S., and Krylov, V.N., Age-related changes in the olfactory sensitivity of male mice to the smell of isovaleric acid, Sens. Sist., 2009, vol. 23, p. 151.

    Google Scholar 

  16. Mirzaei, N., Tang, S.P., Ashworth, S., Coello, C., Plisson, C., Passchier, J., Selvaraj, V., Tyacke, R.J., Nutt, D.J., and Sastre, M., In vivo imaging of microglial activation by positron emission tomography with [(11)C]PBR28 in the 5XFAD model of Alzheimer’s disease, Glia, 2016, vol. 64, p. 993. http://doi.org/10.1002/glia.22978

    PubMed  Google Scholar 

  17. Murphy, C., Olfactory and other sensory impairments in Alzheimer disease, Nat. Rev. Neurol., 2019, vol. 15, p. 11. https://doi.org/10.1038/s41582-018-0097-5

    Article  CAS  Google Scholar 

  18. Nalivaeva, N.N. and Turner, A.J., Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy, Br. J. Pharmacol., 2019, vol. 176, p. 3447. https://doi.org/10.1111/bph.14593

    Article  CAS  Google Scholar 

  19. Nalivaeva, N.N., Zhuravin, I.A., and Turner, A.J., Neprilysin expression and functions in development, ageing and disease, Mech. Ageing Dev., 2020a, vol. 192, p. 111363. http://doi.org/10.1016/j.mad.2020.111363

    Article  CAS  Google Scholar 

  20. Nalivaeva, N.N., Vasilev, D.S., Dubrovskaya, N.M., Turner, A.J., and Zhuravin, I.A., Role of neprilysin in synaptic plasticity and memory, Ross. Fiziol. Zh. im. I.M. Sechenova, 2020b, vol. 106, p. 1191. https://doi.org/10.31857/S0869813920100076

    Article  CAS  Google Scholar 

  21. Neuman, K.M., Molina-Campos, E., Musial, T.F., Price, A.L., Oh, K.J., Wolke, M.L., Buss, E.W., Scheff, S.W., Mufson, E.J., and Nicholson, D.A., Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons, Brain Struct. Funct., 2015, vol. 220, p. 3143. http://doi.org/10.1007/s00429-014-0848-z

    Article  CAS  Google Scholar 

  22. Nocera, S., Simon A., Fiquet, O., Chen, Y., Gascuel, J., Datiche, F., Schneider, N., Epelbaum, J., and Viollet, C., Somatostatin serves a modulatory role in the mouse olfactory bulb: neuroanatomical and behavioral evidence, Front. Behav. Neurosci., 2019, vol. 13, p. 61. https://doi.org/10.3389/fnbeh.2019.00061

    Article  CAS  Google Scholar 

  23. O’Leary, T.P., Stover, K.R., Mantolino, H.M., Darvesh, S., and Brown, R.E., Intact olfactory memory in the 5xFAD mouse model of Alzheimer’s disease from 3 to 15 months of age, Behav. Brain Res., 2020, vol. 393, p. 112731. http://doi.org/10.1016/j.bbr.2020.112731

    Article  Google Scholar 

  24. Oakley, H.O., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., and Vassar, R., Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation, J. Neurosci., 2006, vol. 26, p. 10129. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

    Article  CAS  Google Scholar 

  25. Ohno, M., Cole, S.L., Yasvoina, M., Zhao, J., Citron, M., Berry, R., Disterhoft, J.F., and Vassar, R., BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice, Neurobiol. Dis., 2007, vol. 26, p. 134. http://doi.org/10.1016/j.nbd.2006.12.008

    Article  CAS  Google Scholar 

  26. Park, S.W., Im, S., Jun, H.O., Lee, K., Park, Y.J., Kim, J.H., Park, W.J., Lee, Y.H., and Kim, J.H., Dry age-related macular degeneration like pathology in aged 5XFAD mice: ultrastructure and microarray analysis, Oncotarget, 2017, vol. 8, p. 40006. http://doi.org/10.18632/oncotarget.16967

    Article  Google Scholar 

  27. Paxinos, G. and Franklin, K.B.J., The Mouse Brain in Stereotaxic Coordinates, San Diego: Academic, 2001, 2nd ed.

    Google Scholar 

  28. Reddy, P.H. and Oliver, D.M., Amyloid β and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease, Cells, 2019, vol. 8, p. 488. http://doi.org/10.3390/cells8050488

    Article  CAS  Google Scholar 

  29. Roddick, K.M., Roberts, A.D., Schellinck, H.M., and Brown, R.E., Sex and genotype differences in odor detection in the 3×Tg-AD and 5XFAD mouse models of Alzheimer’s disease at 6 months of age, Chem. Senses, 2016, vol. 41, p. 433. http://doi.org/10.1093/chemse/bjw018

    Article  CAS  Google Scholar 

  30. Saiz-Sanchez, D., Ubeda-Bañon, I., de la Rosa-Prieto, C., Argandoña-Palacios, L., Garcia-Muñozguren, S., Insausti, R., and Martinez-Marcos, A., Somatostatin, tau, and β-amyloid within the anterior olfactory nucleus in Alzheimer disease, Exp. Neurol., 2010, vol. 223, p. 347. http://doi.org/10.1016/j.expneurol.2009.06.010

    Article  CAS  Google Scholar 

  31. Shao, C.Y., Mirra, S.S., Sait, H.B., Sacktor, T.C., and Sigurdsson, E.M., Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease, Acta Neuropathol. 2011, vol. 122, p. 285. http://doi.org/10.1007/s00401-011-0843-x

    Article  CAS  Google Scholar 

  32. Tumanova, N.L., Vasilev, D.S., Dubrovskaya, N.M., and Zhuravin, I.A., Ultrastructural alterations in the sensorimotor cortex upon delayed development of motor behavior in early ontogenesis of rats exposed to prenatal hypoxia, Cell Tissue Biol., 2018, vol. 12, no. 5, p. 419. https://doi.org/10.31116/tsitol.2018.05.09

    Article  Google Scholar 

  33. Tumanova, N.L., Vasilev, D.S., Dubrovskaya, N.M., Nalivaeva, N.N., and Zhuravin, I.A., Effect of prenatal hypoxia on cytoarchitectonics and ultrustructural organisation of brain regions related to olfaction in rats, Tsitologiia, 2021, vol. 15, no. 5, p. 482. http://doi.org/10.31857/S0041377121020085

    CAS  Google Scholar 

  34. Vasilev, D.S., Dubrovskaya, N.M., Zhuravin, I.A., and Nalivaeva, N.N., Developmental profile of brain neprilysin expression correlates with olfactory behaviour of rats, J. Mol. Neurosci., 2021, vol. 71, p. 1772. http://doi.org/10.1007/s12031-020-01786-3

    Article  CAS  Google Scholar 

  35. Wang, C., Telpoukhovskaia, M.A., Bahr, B.A., Chen, X., and Gan, L., Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases, Curr. Opin. Neurobiol., 2018, vol. 48, p. 52. http://doi.org/10.1016/j.conb.2017.09.005

    Article  CAS  Google Scholar 

  36. Yang, Z., Kuboyama, T., and Tohda, C., A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule, Front. Pharmacol., 2017, vol. 8, p. 340. http://doi.org/10.3389/fphar.2017.00340

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the Center for Collective Use of Scientific Equipment for Physiological, Biochemical, and Molecular Biological Research of the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-015-00232) and partly by a state order to the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences (no. AAAA-A18-118012290373-7).

Author information

Authors and Affiliations

Authors

Contributions

N.L. Tumanova, morphological studies, article writing; D.S. Vasiliev, morphological and immunohistochemical assay, statistical data processing; N.M. Dubrovskaya, behavioral experiments and statistical processing of data; N.N. Nalivaeva, data analysis, writing and editing the text of the article, general management of the work. The text and images are approved by all coauthors.

Corresponding author

Correspondence to D. S. Vasiliev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. Experiments with animals were carried out in accordance with the approved protocol for the use of laboratory animals of the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, on the basis of European Communities Council Directive no. 86/609 for the Care of Laboratory Animals.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: APP—β-amyloid peptide precursor, AD—Alzheimer’s disease, Aβ—β-amyloid peptide, PS1—presenilin 1, EPR—endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumanova, N.L., Vasiliev, D.S., Dubrovskaya, N.M. et al. Morphofunctional Changes in the Brain Nervous Tissue of 5xFAD Transgenic Mice. Cell Tiss. Biol. 16, 380–391 (2022). https://doi.org/10.1134/S1990519X22040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22040095

Keywords:

Navigation