Skip to main content

Advertisement

Log in

Expression of the Cerebral Olfactory Receptors Olfr110/111 and Olfr544 Is Altered During Aging and in Alzheimer’s Disease-Like Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A growing number of studies report the expression of olfactory receptors (ORs) in many non-chemosensory tissues and organs. However, within the brain, very few ectopic ORs are exhaustively documented. Their kinetic expression, cellular localization, and functions remain elusive. Using cDNA microarrays, quantitative PCR, and immunohistochemistry, we studied the cellular and sub-cellular localization of Olfr110/111 and Olfr544 and their timely expression in various brain areas of wild-type and transgenic Alzheimer’s disease-like (5xFAD) mice. We observed that Olfr110/111 and Olfr544 proteins are mainly expressed by neurons in cortical and hippocampal regions and, to a lesser extent, by astrocytes, microglia, oligodendrocytes, and endothelial cells. In addition, both ORs are present at the cell membrane and co-expressed with the olfactory Gαolf protein, suggesting that they can be functional. Remarkably, we also found that the expression of the mRNA encoding for Olfr110/111 tends to increase with age in both the cortex and hippocampus of wild-type and transgenic mice. Moreover, Olfr110/111 transcript expression is markedly impaired in the brain of Alzheimer’s disease-like mice. A different profile is noticed for Olfr544, for which an overexpression is observed only in the cortex of 9-month-old animals. In addition, in transgenic mice, olfactory receptors are observed near amyloid plaques. Altogether, our findings indicate that ORs may play a role in brain functioning, in normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  Google Scholar 

  2. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C et al (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355:453–455. https://doi.org/10.1038/355453a0

    Article  CAS  PubMed  Google Scholar 

  3. Asai H, Kasai H, Matsuda Y, Yamazaki N, Nagawa F, Sakano H, Tsuboi A (1996) Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem Biophys Res Commun 221:240–247. https://doi.org/10.1006/bbrc.1996.0580

    Article  CAS  PubMed  Google Scholar 

  4. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 39:239–246. https://doi.org/10.1006/geno.1996.4490

    Article  CAS  PubMed  Google Scholar 

  5. Goto T, Salpekar A, Monk M (2001) Expression of a testis-specific member of the olfactory receptor gene family in human primordial germ cells. Mol Hum Reprod 7:553–558

    Article  CAS  Google Scholar 

  6. Volz A, Ehlers A, Younger R, Forbes S, Trowsdale J, Schnorr D, Beck S, Ziegler A (2003) Complex transcription and splicing of odorant receptor genes. J Biol Chem 278:19691–19701. https://doi.org/10.1074/jbc.M212424200

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda N, Yomogida K, Okabe M, Touhara K (2004) Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci 117:5835–5845. https://doi.org/10.1242/jcs.01507

    Article  CAS  PubMed  Google Scholar 

  8. Fukuda N, Touhara K (2006) Developmental expression patterns of testicular olfactory receptor genes during mouse spermatogenesis: olfactory receptor expression in mouse germ cells. Genes Cells 11:71–81. https://doi.org/10.1111/j.1365-2443.2005.00915.x

    Article  CAS  PubMed  Google Scholar 

  9. Sanz G, Schlegel C, Pernollet J-C, Briand L (2005) Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chem Senses 30:69–80. https://doi.org/10.1093/chemse/bji002

    Article  CAS  PubMed  Google Scholar 

  10. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9. https://doi.org/10.1126/scisignal.2000016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Veitinger T, Riffell JR, Veitinger S, Nascimento JM, Triller A, Chandsawangbhuwana C, Schwane K, Geerts A et al (2011) Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J Biol Chem 286:17311–17325. https://doi.org/10.1074/jbc.M110.211524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adipietro KA, Mainland JD, Matsunami H (2012) Functional evolution of mammalian odorant receptors. PLoS Genet 8:e1002821. https://doi.org/10.1371/journal.pgen.1002821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walensky LD, Roskams AJ, Lefkowitz RJ, Snyder SH, Ronnett GV (1995) Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol Med Camb Mass 1:130–141

    CAS  PubMed  Google Scholar 

  14. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Molecular cloning and chromosomal mapping of olfactory receptor genes expressed in the male germ line: evidence for their wide distribution in the human genome. Biochem Biophys Res Commun 237:283–287. https://doi.org/10.1006/bbrc.1997.7043

    Article  CAS  PubMed  Google Scholar 

  15. Weber M, Pehl U, Breer H, Strotmann J (2002) Olfactory receptor expressed in ganglia of the autonomic nervous system. J Neurosci Res 68:176–184

    Article  CAS  Google Scholar 

  16. Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, Ben-Shahar Y (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50:637–646. https://doi.org/10.1165/rcmb.2013-0199OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalbe B, Knobloch J, Schulz VM, Wecker C, Schlimm M, Scholz P, Jansen F, Stoelben E et al (2016) Olfactory receptors modulate physiological processes in human airway smooth muscle cells. Front Physiol 7:339. https://doi.org/10.3389/fphys.2016.00339

    Article  PubMed  PubMed Central  Google Scholar 

  18. Busse D, Kudella P, Grüning N-M, Gisselmann G, Ständer S, Luger T, Jacobsen F, Steinsträßer L et al (2014) A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Investig Dermatol 134:2823–2832. https://doi.org/10.1038/jid.2014.273

    Article  CAS  PubMed  Google Scholar 

  19. Gelis L, Jovancevic N, Veitinger S, Mandal B, Arndt HD, Neuhaus EM, Hatt H (2016) Functional characterization of the odorant receptor 51E2 in human melanocytes. J Biol Chem 291:17772–17786. https://doi.org/10.1074/jbc.M116.734517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsai T, Veitinger S, Peek I, Busse D, Eckardt J, Vladimirova D, Jovancevic N, Wojcik S et al (2016) Two olfactory receptors -OR2A4/7 and OR51B5- differentially affect epidermal proliferation and differentiation. Exp Dermatol 26:58–65. https://doi.org/10.1111/exd.13132

    Article  CAS  Google Scholar 

  21. Zhang X, De la Cruz O, Pinto JM et al (2007) Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol 8:R86. https://doi.org/10.1186/gb-2007-8-5-r86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pluznick JL, Zou D-J, Zhang X, Yan Q, Rodriguez-Gil DJ, Eisner C, Wells E, Greer CA et al (2009) Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A 106:2059–2064. https://doi.org/10.1073/pnas.0812859106

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kang N, Bahk YY, Lee N, Jae YG, Cho YH, Ku CR, Byun Y, Lee EJ et al (2015) Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets. Biochem Biophys Res Commun 460:616–621. https://doi.org/10.1016/j.bbrc.2015.03.078

    Article  CAS  PubMed  Google Scholar 

  24. Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, Lancet D (2006) Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7:121. https://doi.org/10.1186/1471-2164-7-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang N, Koo J (2012) Olfactory receptors in non-chemosensory tissues. BMB Rep 45:612–622

    Article  CAS  Google Scholar 

  26. Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G (2013) Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One 8:e55368. https://doi.org/10.1371/journal.pone.0055368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, Gisselmann G (2015) RNA-Seq analysis of human trigeminal and dorsal root ganglia with a focus on chemoreceptors. PLoS One 10:e0128951. https://doi.org/10.1371/journal.pone.0128951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffin CA, Kafadar KA, Pavlath GK (2009) MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 17:649–661. https://doi.org/10.1016/j.devcel.2009.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braun T, Voland P, Kunz L, Prinz C, Gratzl M (2007) Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132:1890–1901. https://doi.org/10.1053/j.gastro.2007.02.036

    Article  CAS  PubMed  Google Scholar 

  30. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX et al (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110:4410–4415. https://doi.org/10.1073/pnas.1215927110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Spehr M (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058. https://doi.org/10.1126/science.1080376

    Article  CAS  PubMed  Google Scholar 

  32. Raming K, Konzelmann S, Breer H (1998) Identification of a novel G-protein coupled receptor expressed in distinct brain regions and a defined olfactory zone. Recept Channels 6:141–151

    CAS  PubMed  Google Scholar 

  33. Conzelmann S, Levai O, Bode B, Eisel U, Raming K, Breer H, Strotmann J (2000) A novel brain receptor is expressed in a distinct population of olfactory sensory neurons. Eur J Neurosci 12:3926–3934

    Article  CAS  Google Scholar 

  34. Yuan TT, Toy P, McClary JA et al (2001) Cloning and genetic characterization of an evolutionarily conserved human olfactory receptor that is differentially expressed across species. Gene 278:41–51

    Article  CAS  Google Scholar 

  35. Otaki JM, Yamamoto H, Firestein S (2004) Odorant receptor expression in the mouse cerebral cortex. J Neurobiol 58:315–327. https://doi.org/10.1002/neu.10272

    Article  CAS  PubMed  Google Scholar 

  36. Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I (2013) Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. Neuroscience 248:369–382. https://doi.org/10.1016/j.neuroscience.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Esparcia P, Schlüter A, Carmona M, Moreno J, Ansoleaga B, Torrejón-Escribano B, Gustincich S, Pujol A et al (2013) Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: Novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol 72:524–539. https://doi.org/10.1097/NEN.0b013e318294fd76

    Article  CAS  PubMed  Google Scholar 

  38. Grison A, Zucchelli S, Urzì A, Zamparo I, Lazarevic D, Pascarella G, Roncaglia P, Giorgetti A et al (2014) Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 15:729. https://doi.org/10.1186/1471-2164-15-729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ansoleaga B, Garcia-Esparcia P, Pinacho R, Haro JM, Ramos B, Ferrer I (2015) Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 60:109–116. https://doi.org/10.1016/j.jpsychires.2014.09.012

    Article  PubMed  Google Scholar 

  40. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399. https://doi.org/10.1038/nature11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

    Article  CAS  PubMed  Google Scholar 

  42. Belloir C, Miller-Leseigneur M-L, Neiers F, Briand L, le Bon AM (2017) Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expr Purif 129:31–43. https://doi.org/10.1016/j.pep.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  43. Low VF, Mombaerts P (2017) Odorant receptor proteins in the mouse main olfactory epithelium and olfactory bulb. Neuroscience 344:167–177. https://doi.org/10.1016/j.neuroscience.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  44. Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  CAS  Google Scholar 

  45. Drinnan SL, Hope BT, Snutch TP, Vincent SR (1991) G(olf) in the basal ganglia. Mol Cell Neurosci 2:66–70

    Article  CAS  Google Scholar 

  46. Hervé D, Rogard M, Lévi-Strauss M (1995) Molecular analysis of the multiple golf alpha subunit mRNAs in the rat brain. Brain Res Mol Brain Res 32:125–134

    Article  Google Scholar 

  47. Belluscio L, Gold GH, Nemes A, Axel R (1998) Mice deficient in G(olf) are anosmic. Neuron 20:69–81

    Article  CAS  Google Scholar 

  48. Vemula SR, Puschmann A, Xiao J, Zhao Y, Rudzińska M, Frei KP, Truong DD, Wszolek ZK et al (2013) Role of Gα(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet 22:2510–2519. https://doi.org/10.1093/hmg/ddt102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pronin A, Levay K, Velmeshev D, Faghihi M, Shestopalov VI, Slepak VZ (2014) Expression of olfactory signaling genes in the eye. PLoS One 9:e96435. https://doi.org/10.1371/journal.pone.0096435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jovancevic N, Khalfaoui S, Weinrich M, Weidinger D, Simon A, Kalbe B, Kernt M, Kampik A et al (2017) Odorant receptor 51E2 agonist β-ionone regulates RPE cell migration and proliferation. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00888

  51. Weber L, Al-Refae K, Ebbert J et al (2017) Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis. PLoS One 12:e0172491. https://doi.org/10.1371/journal.pone.0172491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hervé D, Le Moine C, Corvol JC et al (2001) Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 21:4390–4399

    Article  Google Scholar 

  53. Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588

    Article  CAS  Google Scholar 

  54. Hara M, Fukui R, Hieda E, Kuroiwa M, Bateup HS, Kano T, Greengard P, Nishi A (2010) Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem 113:1046–1059. https://doi.org/10.1111/j.1471-4159.2010.06668.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shepherd GM (1985) The olfactory system: the uses of neural space for a non-spatial modality. Prog Clin Biol Res 176:99–114

    CAS  PubMed  Google Scholar 

  56. Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19:517–544. https://doi.org/10.1146/annurev.ne.19.030196.002505

    Article  CAS  PubMed  Google Scholar 

  57. Gong L, Chen Q, Gu X, Li S (2015) Expression and identification of olfactory receptors in sciatic nerve and dorsal root ganglia of rats. Neurosci Lett 600:171–175. https://doi.org/10.1016/j.neulet.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  58. Siwek ME, Müller R, Henseler C, Trog A, Lundt A, Wormuth C, Broich K, Ehninger D et al (2015) Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer’s disease. Neural Plast 2015:781731. https://doi.org/10.1155/2015/781731

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527. https://doi.org/10.1038/nature24016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Machado-Salas JP, Scheibel AB (1979) Limbic system of the aged mouse. Exp Neurol 63:347–355

    Article  CAS  Google Scholar 

  61. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297. https://doi.org/10.1038/77046

    Article  CAS  PubMed  Google Scholar 

  62. Lu T, Pan Y, Kao S-Y, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. https://doi.org/10.1038/nature02661

    Article  CAS  PubMed  Google Scholar 

  63. Raj D, Yin Z, Breur M, Doorduin J, Holtman IR, Olah M, Mantingh-Otter IJ, van Dam D et al (2017) Increased white matter inflammation in aging- and Alzheimer’s disease brain. Front Mol Neurosci 10:206. https://doi.org/10.3389/fnmol.2017.00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J et al (2013) Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PLoS One 8:e57000. https://doi.org/10.1371/journal.pone.0057000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Connelly T, Yu Y, Grosmaitre X, Wang J, Santarelli LC, Savigner A, Qiao X, Wang Z et al (2015) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci 112:590–595. https://doi.org/10.1073/pnas.1418515112

    Article  CAS  PubMed  Google Scholar 

  66. Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12:73–87. https://doi.org/10.1038/nrn2977

    Article  CAS  PubMed  Google Scholar 

  67. Cochet M, Donneger R, Cassier E, Gaven F, Lichtenthaler SF, Marin P, Bockaert J, Dumuis A et al (2013) 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem Neurosci 4:130–140. https://doi.org/10.1021/cn300095t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kevin Baranger for providing the animals needed and for its helpful comments.

Funding

This work was supported by a research grant from the GPM (“Groupement Pasteur Mutualité”). Fanny Gaudel was a recipient of fellowships from the Edmond Roudnitska Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Guiraudie-Capraz.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing financial interests.

Additional information

François Féron and Gaëlle Guiraudie-Capraz equally supervised this work.

Electronic Supplementary Material

Supplementary Table 1

Dysregulated expression of genes coding for olfactory receptors in the cortex and hippocampus of 5xFAD mice, at M1, M4, M6 and M9. Overexpressed and under-expressed transcripts in transgenic mice are indicated in red and green, respectively. Olfr: Olfactory receptor; Gnal: Gαolf; Adcy3: Adenylyl cyclase 3. n = 3 per group (pooled results). (PNG 282 kb)

High Resolution Image

(EPS 339138 kb)

Supplementary Figure 1

Tissue-dependent expression of mRNAs coding for Olfr110/111, Olfr544 and Gαolf protein. In comparison with the olfactory mucosa, Olfr110/111, Olfr544 and Gαolf transcripts are poorly expressed in the central nervous system. A receptor-related expression profile is observed: Olfr110/111 is more predominant in the cortex and the eye at M4, M9 and M12 (a) while Olfr544 is more abundantly expressed in the cerebellum, at M4, M9 and M12 (b) and Gαolf is less expressed in the eye than in the cortex, the hippocampus and the cerebellum, at M4, M9 and M12. n = 6 per group. **, p < 0,01 (Mann and Whitney non-parametric test). M4, 4 months; M9, 9 months; M12, 12 months; WT, wild type mice. Olfr110/111, olfactory receptors 110/111 (green); Olfr544, olfactory receptor 544 (pink); Gαolf, Gαolf protein gene (dark pink). (PNG 834 kb)

High Resolution Image

(TIF 97799 kb)

Supplementary Figure 2

Neuronal expression of Olf110/111 and Olfr544. The cortex (a, c) and hippocampus (b, d) of M9 WT mice were double-immunostained with specific antibodies for neurons (NeuN, green) and the two studied receptors (magenta). Olfr110/111 (a, b) and Olfr544 (c, d) are weakly expressed by a small number of neurons. Scale bar = 10 μm. (PNG 7414 kb)

High Resolution Image

(TIF 46121 kb)

Supplementary Figure 3

Expression of Olf110/111 and Olfr544 in astrocytes. The cortex (a, c) and hippocampus (b, d) of M9 WT mice were double-immunostained with specific antibodies for astrocytes (GFAP, green) and the two studied receptors (magenta). Olfr110/111 (a, b) and Olfr544 (c, d) are weakly expressed by a few astrocytes. Scale bar = 10 μm. (PNG 2747 kb)

High Resolution Image

(TIF 48456 kb)

Supplementary Figure 4

Expression of Olfr110/111 and Olfr544 in neurons, astrocytes and microglia. Brain sections of M9 transgenic mice were double-immunostained with specific antibodies for Olfr110/111 or Olfr544 (magenta), neurons (a-d), astrocytes (e-h) and microglia (i-l). For Olfr110/111, the dilutions 1:100 (a, e, i) and 1:1000 (b, f, j) were used. For Olfr544, the dilutions 1:200 (c, g, k) and 1:1000 (d, h, l) were used. Scale bar = 10 μm. (PNG 18365 kb)

High Resolution Image

(TIF 137323 kb)

Supplementary Figure 5

Expression of Olfr110/111 and Olfr544 in the brains of M9 5xFAD mice. Olfr110/111 (top, magenta) and Olfr544 (bottom, magenta) are observed in the vicinity of amyloid plaques (green). Scale bar = 10 μm. (PNG 3505 kb)

High Resolution Image

(TIF 25100 kb)

Supplementary Figure 6

Olfr110/111 and Olfr544 are present at the cell membrane. Hippocampal sections of M6 WT mice were double-stained with specific antibodies for Olfr110/111 (a, b, c) and Olfr544 (d, e, f) (magenta), and a fluorescent marker of the cell membrane (WGA, Wheat Germ Agglutinin, green). Both receptors are observed at the cell membrane, in the dentate gyrus (a, d), the CA3 filed (b, e) and the cortex (c, f). Scale bar = 5 μm. (PNG 8119 kb)

High Resolution Image

(TIF 48180 kb)

Supplementary Figure 7

Olfr110/111 and Olfr544 are co-expressed with Gαolf in the hippocampus and cortex. Hippocampal sections of M9 transgenic mice were double-stained with specific antibodies for Olfr110/111 (a, b, c), Olfr544 (d, e, f) (magenta) and Gαolf (green). Both receptors are co-expressed with Gαolf in the dentate gyrus (a, d), the CA3 filed (b, e) and the cortex (c, f). Scale bar = 10 μm. (PNG 10078 kb)

High Resolution Image

(TIF 66363 kb)

Supplementary Figure 8

Time- and area-dependent expression of the transcripts coding for Olfr110/111 and Olfr544. In comparison with wild type animals, transgenic mice display an increased expression of Olfr110/111, at all time points, in the cortex (a) and the hippocampus (b). For Olfr544 (c, d), a dysregulated expression is observed only at M6, in the cortical area. n = 6 per group. *: p < 0,05; **: p < 0,01 (Mann and Whitney non-parametric test). M4, 4 months; M6, 6 months; M9, 9 months; M12, 12 months; Tg, 5xFAD transgenic mice (striped); WT, wild type mice (flat); Olfr110/111, olfactory receptors 110/111 (green); Olfr544, olfactory receptor 544 (pink). (PNG 538 kb)

High Resolution Image

(TIF 93096 kb)

Supplementary Figure 9

Western-blot analysis of the heterologous expression of Olfr110 and Olfr544 in HEK293T cells. The proteins extracted from HEK cells, transfected with either Olfr110 or Olfr544 or pcDNA3.1 were submitted to an immunolabeling with antibodies raised against Olfr110 or Olfr544. The anti-Olfr110 and anti-Olfr544 antibodies reveal a protein weighing about 35 kDa. Both immunolabeled proteins are expressed in the transiently OR transfected-HEK cells but no protein is detected in pcDNA3.1 transfected-HEK cells, as expected. (PNG 540 kb)

High Resolution Image

(TIF 10657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudel, F., Stephan, D., Landel, V. et al. Expression of the Cerebral Olfactory Receptors Olfr110/111 and Olfr544 Is Altered During Aging and in Alzheimer’s Disease-Like Mice. Mol Neurobiol 56, 2057–2072 (2019). https://doi.org/10.1007/s12035-018-1196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1196-4

Keywords

Navigation