Skip to main content
Log in

The influence of human fetal mesenchymal stem cells on glioma cell proliferation. The consequence of cellular crosstalk

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The influence of mesenchymal stem cells (MSC) on the growth of various tumors is ambiguous. MSC derived from different tissues stimulate growth of some tumor types, but have a prominent antitumor affect on other tumors. It has been reported recently that the outcome may be determined by crosstalk between tumor cells and MSC. The aim of this study was to examine the impact of MSC derived from fetal tissues on glioma cell proliferation during prolonged coculturing. We have analyzed the proliferative activity of glioma cells exposed to conditioned medium (CM) from MSC derived from fetal bone marrow (FetMSC), fetal muscle (M-FetMSC), and CM from cocultures of the fetal MSC with U251MG glioma cells. The effect was compared with the influence of CM from adult dermal fibroblasts (DF). Using MTT assay, we found that CM both from the fetal MSC and adult DF (without coculturing with glioma cells) had no effect on U251MG and A172 glioma cell proliferation. However, CM from early cocultures (3–9 days) of U251MG cells with FetMSC or M-FetMSC exerted a stimulatory effect on U251MG cell proliferation while CM taken from the same cocultures later (15–21 days) inhibited the cell proliferation. Adult DF displayed a persistent stimulation of U251MG cell proliferative activity. Immunofluorescence analysis revealed declined expression of cell cycle protein cyclin D1 in U251MG cells after their treatment with CM from 21-day cocultures of U251MG cells with FetMSC or M-FetMSC. In contrast, CM from 21-day cocultures of U251MG cells with DF did not decrease cyclin D1 expression. These results show that the effect of fetal MSC on glioma cell proliferation is ambivalent. Stimulation of proliferative activity was observed in the early period of cocultivation; however, inhibition of glioma cell proliferation was registered after 3 weeks of their coculturing with fetal MSC. This is the first report showing reversion of tumor cell proliferative program during long-term coculturing with MSC. These data suggest that CM obtained at different time points of coculturing may be used in the modeling of prolonged cellular crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DF:

dermal fibroblasts

CM:

conditioned medium

MSC:

mesenchymal stem cells

References

  • Akimoto, K., Kimur, K., Nagano, M., Takano, S., To’a Salazar, G., Yamashita, T., and Ohneda, O., Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote glioblastoma multiforme proliferation, Stem Cells Dev., 2013, vol. 22, pp. 1370–1386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldin, V., Lukas, J., Marcote, M.J., Pagano, M., and Draetta, G., Cyclin D1 is a nuclear protein required for cell cycle progression in G1, Genes Dev., 1993, vol. 7, pp. 812–821.

    Article  CAS  PubMed  Google Scholar 

  • Barbash, I.M., Chouraqui, P., Baron, J., Feinberg, M.S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L.H., Kloner, R.A., and Leor, J., Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution, Circulation, 2003, vol. 108, pp. 863–868.

    Article  PubMed  Google Scholar 

  • Bitsika, V., Vlahou, A., and Roubelakis, M.G., Fetal mesenchymal stem cells in cancer therapy, Curr. Stem Cell Res. Ther., 2013, vol. 8, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Brower, V., Search and destroy: recent research exploits adult stem cells’ attraction to cancer, J. Natl. Cancer Inst., 2005, vol. 97, pp. 414–416.

    Article  PubMed  Google Scholar 

  • Burdon, T.J., Paul, A., Noiseux, N., Prakash, S., and Shum-Tim, D., Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential, Bone Marrow Res., 2011, vol. 207326. doi: 10.1155/2011/207326

  • Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M., Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats, Stroke, 2001, vol. 32, pp. 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Ciavarella, S., Dominici, M., Dammacco, F., and Silvestris, F., Mesenchymal stem cells: new promise in anticancer therapy, Stem Cells Dev., 2011, vol. 20, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Dasari, V.R., Velpula, K.K., Kaur, K., Fassett, D., Klopfenstein, J.D., Dinh, D.H., Gujrati, M., and Rao, J.S., Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP), PLoS One, 2010, vol. 5, p. e11813.

    Article  PubMed Central  PubMed  Google Scholar 

  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noël, D., and Jorgensen, C., Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals, Blood, 2003, vol. 102, pp. 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  • Doucette, T., Rao, G., Yang, Y., Gumin, J., Shinojima, N., Bekele, B.N., Qiao, W., Zhang, W., and Lang, F.F., Mesenchymal stem cells display tumor-specific tropism in an RCAS/Ntv-a glioma model, Neoplasia, 2011, vol. 13, pp. 716–725.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eterno, V., Zambelli, A., Pavesi, L., Villani, L., Zanini, V., Petrolo, G., Manera, S., Tuscano, A., and Amato, A., Adipose-derived mesenchymal stem cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling, Oncotarget, 2014, vol. 5, pp. 613–633.

    PubMed Central  PubMed  Google Scholar 

  • Götze, S., Wolter, M., Reifenberger, G., Müller, O., and Sievers, S., Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas, Int. J. Cancer., 2010, vol. 126, pp. 2584–2593.

    PubMed  Google Scholar 

  • Gregory, C.A., Singh, H., Perry, A.S., and Prockop, D.J., The Wnt signaling inhibitor Dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow, J. Biol. Chem., 2003, vol. 278, pp. 28067–28078.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Harwalkar, J., Stacey, D.W., and Hitomi, M., Destabilization of cyclin D1 message plays a critical role in cell cycle exit upon mitogen withdrawal, Oncogene, 2005, vol. 24, pp. 1032–1042.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., Meng, X., Yin, Z., Rogers, A., Zhong, J., Rillema, P., Jackson, J.A., Ichim, T.E., Minev, B., Carrier, E., Patel, A.N., Murphy, M.P., Min, W.P., and Riordan, N.H., Inhibition of intracranial glioma growth by endometrial regenerative cells, Cell Cycle, 2009, vol. 8, pp. 606–610.

    Article  CAS  PubMed  Google Scholar 

  • Hinds, P.W., Dowdy, S.F., Eaton, E.N., Arnold, A., and Weinberg, R.A., Function of a human cyclin gene as an oncogene, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 709–713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho, I.A., Chan, K.Y., Ng, W.H., Guo, C.M., Hui, K.M., Cheang, P., and Lam, P.Y., Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma, Stem Cells, 2009, vol. 27, pp. 1366–1375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong, X., Miller, C., Savant-Bhonsale, S., and Kalkìanis, S.N., Antitumor treatment using nterleukin-12-secreting marrow stromal cells in an invasive glioma model, Neurosurgery, 2009, vol. 64, pp. 1139–1147.

    Article  PubMed  Google Scholar 

  • Hou, L., Wang, X., Zhou, Y., Ma, H., Wang, Z., He, J., Hu, H., Guan, W., and Ma, Y., Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells, Tumour Biol., 2014, vol. 35, pp. 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, H., Guan, F., Yang, B., Li, J., Shan, H., Song, L., Hu, X., and Du, Y., Human umbilical cord blood-derived mesenchymal stem cells inhibit c6 glioma via downregulation of cyclin D1, Neurol. India, 2011, vol. 59, pp. 241–247.

    Article  PubMed  Google Scholar 

  • Jiao, H., Guan, F., Yang, B., Li, J., Song, L., Hu, X., and Du, Y., Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways, Mol. Biol. Rep., 2012, vol. 39, pp. 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, M., Patil, P., He, Z., Holgersson, J., Olausson, M., and Sumitran-Holgersson, S., Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes, Cytotherapy, 2012, vol. 14, pp. 657–669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang, S.G., Jeun, S.S., Lim, J.Y., Kim, S.M., Yang, Y.S., Oh, W.I., Huh, P.W., and Park, C.K., Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells, Childs Nerv. Syst., 2008, vol. 24, pp. 293–302.

    Article  PubMed  Google Scholar 

  • Khakoo, A.Y., Pati, S., Anderson, S.A., Reid, W., Elshal, M.F., Rovira, I.I., Nguyen, A.T., Malide, D., Combs, C.A., Hall, G., Zhang, J., Raffeld, M., Rogers, T.B., Stetler-Stevenson, W., Frank, J.A., Reitz, M., and Finkel, T., Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma, J. Exp. Med., 2006, vol. 203, pp. 1235–1247.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krylova, T.A., Musorina, A.S., Zenin, V.V., Yakovleva, T.K., and Poljanskaya, G.G., Comparative characteristics of mesenchymal stem cell lines derived from bone marrow and muscle of limb of early human embryo, Tsitologiia, 2014, vol. 56, no. 8, pp. 562–573.

    CAS  PubMed  Google Scholar 

  • Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V., and Altaner, C., Tumor cell behaviour modulation by mesenchymal stromal cells, Mol. Cancer, 2010, vol. 9, p. 129. doi: 10.1186/1476-4598-9-129

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, G., Wang, R., Gao, J., Deng, K., Wei, J., and Wei, Y., RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells, Mol. Cell. Biochem., 2011, vol. 350, pp. 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y.R., Yuan, Y., Wang, X.J., Wei, L.L., Chen, Y.N., Cong, C., Li, S.F., Long, D., Tan, W.D., Mao, Y.Q., Zhang, J., Li, Y.P., and Cheng, J.Q., The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo, Cancer Biol. Ther., 2008, vol. 7, pp. 245–251.

    Article  CAS  PubMed  Google Scholar 

  • Ma, S., Liang, S., Jiao, H., Chi, L., Shi, X., Tian, Y., Yang, B., and Guan, F., Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of Dickkopf-1 (DKK1), Mol. Cell. Biochem., 2014, vol. 385, pp. 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Menon, L.G., Kelly, K., Yang, H.W., Kim, S.K., Black, P.M., and Carroll, R.S., Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy, Stem Cells, 2009, vol. 27, pp. 2320–2330.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, P.J., Mishra, P.J., Humeniuk, R., Medina, D.J., Alexe, G., Mesirov, J.P., Ganesan, S., Glod, J.W., and Banerjee, D., Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells, Cancer Res., 2008, vol. 68, pp. 4331–4339.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., and Lang, F.F., Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas, Cancer Res., 2005, vol. 65, pp. 3307–3318.

    CAS  PubMed  Google Scholar 

  • Phinney, D.G. and Sensebé, L., Mesenchymal stromal cells: misconceptions and evolving concepts, Cytotherapy, 2013, vol. 15, pp. 140–145.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, L., Xu, Z.L., Zhao, T.J., Ye, L.H., and Zhang, X.D., Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling, Cancer Lett., 2008a, vol. 269, pp. 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R.C., Ye, L., and Zhang, X., Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model, Cell Res., 2008b, vol. 18, pp. 500–507.

    Article  CAS  PubMed  Google Scholar 

  • Reya, T. and Clevers, H., Wnt signalling in stem cells and cancer, Nature, 2005, vol. 434, pp. 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, L.V., Antoon, J.W., Muir, S.E., Elliott, S., Beckman, B.S., and Burow, M.E., Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk, Mol. Cancer, 2010, vol. 9, p. 295. doi: 10.1186/1476-4598-9-295

    Article  PubMed Central  PubMed  Google Scholar 

  • Sallinen, S.L., Sallinen, P.K., Kononen, J.T., Syrjäkoski, K.M., Nupponen, N.N., Rantala, I.S., Helén, P.T., Helin, H.J., and Haapasalo, H.K., Cyclin D1 expression in astrocytomas is associated with cell proliferation activity and patient prognosis, J. Pathol., 1999, vol. 188, pp. 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Sasportas, L.S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J.A., Mohapatra, G., Figueiredo, J.L., Martuza, R.L., Weissleder, R., and Shah, K., Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 4822–4827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surawicz, T.S., Davis, F., Freels, S., Laws, E.R.Jr., and Menck, H.R., Brain tumor survival: results from the national cancer data base, J. Neurooncol., 1998, vol. 40, pp. 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Takahara, K., Ii, M., Inamoto, T., Komura, K., Ibuki, N., Minami, K., Uehara, H., Hirano, H., Nomi, H., Kiyama, S., Asahi, M., and Azuma, H., Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis, Biochem. Biophys. Res. Commun., 2014, vol. 446, pp. 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  • Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.K., Wen, P.Y., and Olson, J.J., Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma, CA Cancer J. Clin., 2010, vol. 60, pp. 166–193.

    Article  PubMed Central  PubMed  Google Scholar 

  • Velpula, K.K., Dasari, V.R., Tsung, A.J., Gondi, C.S., Klopfenstein, J.D., Mohanam, S., and Rao, J.S., Regulation of glioblastoma progression by cord blood stem cells is mediated by downregulation of cyclin D1, PLoS One, 2011, vol. 6, p. e18017. doi: 10.1371/journal.pone.0018017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Zhang, Y., Qian, C., Cai, M., Li, Y., Li, Z., You, Q., Wang, Q., Hu, R., and Guo, Q., GSK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin, Toxicol. Lett., 2013, vol. 222, pp. 212–223.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Shi, J., Yu, B., Ni, W., Wu, X., and Gu, Z., Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro, Oncol. Rep., 2010, vol. 23, pp. 1561–1567.

    CAS  PubMed  Google Scholar 

  • Ye, H., Cheng, J., Tang, Y., Liu, Z., Xu, C., Liu, Y., and Sun, Y., Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer, Cancer Invest., 2012, vol. 30, pp. 513–518.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J.M., Jun, E.S., Bae, Y.C., and Jung, J.S., Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo, Stem Cells Dev., 2008, vol. 17, pp. 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Lee, Y.W., Rui, Y.F., Cheng, T.Y., Jiang, X.H., and Li, G., Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors, Stem Cell Res. Ther., 2013, vol. 4, p. 70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou, Y., Liu, F., Xu, Q., and Wang, X., Analysis of the expression profile of Dickkopf-1 gene in human glioma and the association with tumor malignancy, Exp. Clin. Cancer Res. 29: 138. doi:, 2010, vol. 101186/1756-9966-29-138.

    Google Scholar 

  • Zhu, W., Huang, L., Li, Y., Qian, H., Shan, X., Yan, Y., Mao, F., Wu, X., and Xu, W.R., Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth, Cell Cycle, 2011, vol. 10, pp. 3198–3207.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerlin, L., Park, T.S., Zambidis, E.T., Donnenberg, V.S., and Donnenberg, A.D., Mesenchymal stem cell secretome and regenerative therapy after cancer, Biochimie, 2013, vol. 95, pp. 2235–2245.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Chistyakova.

Additional information

Original Russian Text © I.A. Chistyakova, G.G. Poljanskaya, 2014, published in Tsitologiya, 2014, Vol. 56, No. 11, pp. 800–808.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakova, I.A., Poljanskaya, G.G. The influence of human fetal mesenchymal stem cells on glioma cell proliferation. The consequence of cellular crosstalk. Cell Tiss. Biol. 9, 71–78 (2015). https://doi.org/10.1134/S1990519X15020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15020042

Keywords

Navigation