Skip to main content

Advertisement

Log in

RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

iASPP is an evolutionally conserved inhibitory member of the ASPP (apoptosis-stimulating protein of p53) protein family. Overexpression of iASPP was observed in several types of human tumors, however, its role in tumorigenesis has not been fully clarified. To investigate the role of iASPP in human glioblastoma multiforme (GMB) progression, the authors employed lentivirus-mediated shRNA to silence endogenous iASPP expression and elucidated iASPP function by analysis of viability, colony formation, DNA synthesis, and cell cycle in p53-mutant glioblastoma cell line U251. iASPP was significantly and sustainably knocked down by iASPP-specific shRNA in U251 cells. Stable down-regulation of iASPP expression-induced cell proliferation inhibition and G0/G1 cell cycle arrest by down-regulation of cyclin D1 and up-regulation of p21Waf1/Cip1. Thus, the findings not only provide a molecular basis for the role of iASPP in cell cycle progression of glioblastoma cells but also suggest a novel therapeutic target for the treatment of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO, Cairncross JG (2006) Changing paradigms—an update on the multidisciplinary management of malignant glioma. Oncologist 11:165–180

    Article  PubMed  CAS  Google Scholar 

  2. Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh JK, O’Connor DJ, Zhong S, Campargue I, Tomlinson ML, Kuwabara PE, Lu X (2003) iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet 33:162–167

    Article  PubMed  CAS  Google Scholar 

  3. Yang JP, Hori M, Takahashi N, Kawabe T, Kato H, Okamoto T (1999) NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2. Oncogene 18:5177–5186

    Article  PubMed  CAS  Google Scholar 

  4. Yang JP, Hori M, Sanda T, Okamoto T (1999) Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. J Biol Chem 274:15662–15670

    Article  PubMed  CAS  Google Scholar 

  5. Trigiante G, Lu X (2006) ASPPs and cancer. Nat Rev Cancer 6:217–226

    Article  PubMed  CAS  Google Scholar 

  6. Slee EA, Lu X (2003) The ASPP family: deciding between life and death after DNA damage. Toxicol Lett 139:81–87

    Article  PubMed  CAS  Google Scholar 

  7. Zhang X, Wang M, Zhou C, Chen S, Wang J (2005) The expression of iASPP in acute leukemias. Leuk Res 29:179–183

    Article  PubMed  CAS  Google Scholar 

  8. Liu ZJ, Cai Y, Hou L, Gao X, Xin HM, Lu X, Zhong S, Gu SZ, Chen J (2008) Effect of RNA interference of iASPP on the apoptosis in MCF-7 breast cancer cells. Cancer Invest 26:878–882

    Article  PubMed  CAS  Google Scholar 

  9. Mori T, Okamoto H, Takahashi N, Ueda R, Okamoto T (2000) Aberrant overexpression of 53BP2 mRNA in lung cancer cell lines. FEBS Lett 465:124–128

    Article  PubMed  CAS  Google Scholar 

  10. Lage H (2005) Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 1:103–113

    Article  PubMed  CAS  Google Scholar 

  11. Abdelrahim M, Safe S, Baker C, Abudayyeh A (2006) RNAi and cancer: implications and applications. J RNAi Gene Silen 2:136–145

    CAS  Google Scholar 

  12. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984

    Article  PubMed  CAS  Google Scholar 

  13. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  14. Nishitsuji H, Ikeda T, Miyoshi H, Ohashi T, Kannagi M, Masuda T (2004) Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 6:76–85

    Article  PubMed  CAS  Google Scholar 

  15. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  PubMed  CAS  Google Scholar 

  16. Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM, Schonely K, Ni Y, Binder GK, Levine BL, MacGregor RR, June CH, Dropulic B (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16:17–25

    Article  PubMed  CAS  Google Scholar 

  17. Bank A, Dorazio R, Leboulch P (2005) A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci 1054:308–316

    Article  PubMed  CAS  Google Scholar 

  18. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501

    Article  PubMed  CAS  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  21. Rasola A, Geuna M (2001) A flow cytometry assay simultaneously detects independent apoptotic parameters. Cytometry 45:151–157

    Article  PubMed  CAS  Google Scholar 

  22. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  23. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  PubMed  CAS  Google Scholar 

  24. Liu ZJ, Zhang Y, Zhang XB, Yang X (2004) Abnormal mRNA expression of ASPP members in leukemia cell lines. Leukemia 18:880

    Article  PubMed  Google Scholar 

  25. Bögler O, Huang HJ, Kleihues P, Cavenee WK (1995) The p53 gene and its role in human brain tumors. Glia 15:308–327

    Article  PubMed  Google Scholar 

  26. Newcomb EW, Madonia WJ, Pisharody S, Lang FF, Koslow M, Miller DC (1993) A correlative study of p53 protein alteration and p53 gene mutation in glioblastoma multiforme. Brain Pathol 3:229–235

    Article  PubMed  CAS  Google Scholar 

  27. Frankel RH, Bayona W, Koslow M, Newcomb EW (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52:1427–1433

    PubMed  CAS  Google Scholar 

  28. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  29. Ball KL (1997) p21: structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 3:125–134

    PubMed  CAS  Google Scholar 

  30. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9:935–944

    Article  PubMed  CAS  Google Scholar 

  31. Bates S, Parry D, Bonetta L, Vousden K, Dickson C, Peters G (1994) Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein. Oncogene 9:1633–1640

    PubMed  CAS  Google Scholar 

  32. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    Article  PubMed  CAS  Google Scholar 

  33. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY (1994) D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14:2066–2076

    PubMed  CAS  Google Scholar 

  34. Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71:323–334

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Wang, R., Gao, J. et al. RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem 350, 193–200 (2011). https://doi.org/10.1007/s11010-010-0698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0698-9

Keywords

Navigation