Skip to main content
Log in

Effect of Pinealon on Learning and Expression of NMDA Receptor Subunit Genes in the Hippocampus of Rats with Experimental Diabetes

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the effect of the peptide drug pinealon (Glu-Asp-Arg) at doses of 50, 100, and 200 ng/kg on the training of rats in the Morris maze and the maintenance of the acquired skill after the development of experimental diabetes. We also studied the changes in the subunit composition of NMDA receptors in the hippocampus in these experimental models. In the Morris water maze, spatial learning was evaluated for 3 days, and pinealon was administered for 5 days following animal training. After training, animals were injected once with streptozotocin at a dose of 50 mg/kg of rat body weight. Estimation of the maintenance of the acquired skill and molecular studies (using real-time PCR) were performed on day 21 after modeling of experimental diabetes. It was shown that pinealon has a dose-dependent effect on the parameters studied. The most positive effect on the maintenance of the developed skill during streptozotocin-induced diabetes was observed after pinealon administration at a dose of 100 ng/kg. At this dose, we observed the smallest changes in the expression level of the Grin1, Grin2b, and Grin2d genes relative to the control values, as well as increased values of Grin2a/Grin2b ratio compared to diabetic groups treated with pinealon at dosages of 50 or 200 ng/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dedov, I.I., Shestakova, M.V., Vikulova, O.K., Zheleznyakova, A.V., and Isakov, M.A., Sakharnyi Diabet, 2018, vol. 21, no. 3, pp. 144–159.

    Google Scholar 

  2. Nampoothiri, M., Reddy, N.D., and John, J., Behavioural Neurology, vol. 2014, p. 8.

  3. Devaskar, S.U., Giddings, S.J., Rajakumar, P.A., Carnaghi, L.R., Menon, R.K., and Zahm, D.S., J. Biol. Chem., 1994, vol. 269, pp. 8445–8454.

    CAS  PubMed  Google Scholar 

  4. Caruso, M.A. and Sheridan, M.A., Gen. Comp. Endocrinol., 2011, vol. 173, pp. 227–247.

    Article  CAS  Google Scholar 

  5. Baskin, D.G., Schwartz, M.W., Sipols, A.J., D’Alessio, D.A., Goldstein, B.J., and White, M.F., Endocrinology, 1994, vol. 34, pp. 1952–1955.

  6. Baura, G.D., Foster, D.M., Kaiyala, K., Porte, D.Jr., Kahn, S.E., and Schwartz, M.W., Diabetes, 1996, vol. 45, pp. 86–90.

  7. Blinov, D.V., Epilepsiya i paroksizmal’nye sostoyaniya, 2014, vol. 6, no. 1, pp. 70–84.

  8. Wu, L.-J., Xu, H., Ren, M., Cao, X., and Zhuo, M., Molecular Pain, 2007, vol. 3, p. 11.

    Article  CAS  Google Scholar 

  9. Baez, M.V., Cercato, M.C., and Jerusalinsky, D.A., Neural Plasticity, 2018, Article ID 5093038.

  10. Cercato, M.C., Vazquez, C.A., and Kornisiuk, E., Front. Behav. Neurosci., 2017, vol. 10, p. 242.

    Article  Google Scholar 

  11. Shohami, E. and Biegon, A., CNS and Neurological Disorders–Drug Targets, 2014, vol. 13, no. 4, pp. 567–573.

    Article  CAS  Google Scholar 

  12. Bannerman, D.M., Niewoehner, B., and Lyon, L., J. Neuroscience, 2008, vol. 28, no. 14, pp. 3623–3630.

    Article  CAS  Google Scholar 

  13. Tse, Y.C., Bagot, R.C., Hutter, J.A., Wong, A.S., and Wong, T.P., PLoS One, 2011, vol. 6, no. 11, e27215.

  14. Nampoothiri, LaiT.W., Zhang, S., and Wang, Y.T., Progress in Neurobiology, 2014, vol. 115, pp. P. 157–188.

  15. Pomytkin, I., Costa-Nunes, J.P., and Kasatkin, V., CNS Neuroscience &Therapeutics, 2018, vol. 24, iss. 9. https://doi.org/10.1111/cns.12866

  16. McNay, E.C. and Recknagel, A.K., Neurobiol. Learn. Mem., 2011, vol. 96, pp. 432–342.

    Article  CAS  Google Scholar 

  17. Kullmann, S., Heni, M., and Hallschmid, M., Physiol. Rev., 2016, vol. 96, pp. 1169–1209.

    Article  CAS  Google Scholar 

  18. Qiu, J., Zhang, C., and Borgquist, A., Cell Metab., 2014, vol. 19, pp. 682–693.

    Article  CAS  Google Scholar 

  19. Chen, W., Balland, E., and Cowley, M.A., Neuroendocrinology, 2017, vol. 104, pp. 364–381.

    Article  CAS  Google Scholar 

  20. Morris, R.G., J. Neurosci. Met., 1984, vol. 11, pp. 47–60.

    Article  CAS  Google Scholar 

  21. Szkudelski, T., Ibed, 2001, vol. 50, no. 6, pp. 536–546.

  22. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  Google Scholar 

  23. Karantysh, G.V., Abramchuk, V.A., Ryzhak, G.A., and Mendzheritskii, A.M., Fundamental’nye Issledovaniya, 2013, no. 6, pp. 1406–1410.

  24. Mendzheritskii, A.M., Karantysh, G.V., Ryzhak, G.A., and Dem’yanenko, S.V., Uspekhi Gerontologii, 2014, vol. 27, no. 1, pp. 94–97.

    CAS  PubMed  Google Scholar 

  25. Aykut, U., Goncalves, G.H.M., and Li, W., Molecular Metabolism, 2015, vol. 4, no. 10, pp. 678–691.

    Article  Google Scholar 

  26. Paoletti, P., Bellone, C., and Zhou, Q., Nat. Rev. Neurosci., 2013, vol. 14, pp. 383–400.

    Article  CAS  Google Scholar 

  27. Shang, Y., Zhang, J., and Huang, E.J., J. Neurosci., 2018, vol. 38, no. 16, pp. 4006–4019.

  28. von Engelhardt, J., Bocklisch, C., Tonges, L., et al., Front. Cell. Neurosci., 2015, vol. 9, p. 95.

    PubMed  PubMed Central  Google Scholar 

  29. Cavallaro, S., D’Agata, V., Manickam, P., Dufour, F., and Alkon, D.L., Proc. Nat. Acad. Sci. U. S. A., 2001, vol. 99, no. 25, pp. 16279–16284.

    Article  Google Scholar 

  30. Zhang, L., Yu, W., Han, T.-Z., Xie, W., and Luo, Y., Sheng Li Xue Bao, 2006, vol. 58, no. 5, pp. 442–448.

    CAS  PubMed  Google Scholar 

  31. Baez, M.V., Oberholzer, M.V., Cercato, M.C., Snitcofsky, M., Aguirre, A.I., and Jerusalinsky, D.A., PLoS One, 2013, vol. 8, no. 2, e55244.

  32. Hepp, Y., Salles, A., Carbo-Tano, M., Pedreira, M.E., and Freudenthal, R., Learning and Memory, 2016, vol. 23, no. 8, pp. 427–434.

  33. Shanmugasundaram, B., Sase, A., and Miklosi, A.G., Behav. Brain Res., vol. 289, no. 2015, pp. 157–168.

  34. Liu, Y., Wong, T.P., and Aarts, M., J. Neurosci., 2007, vol. 27, no. 11, pp. 2846–2857.

  35. Taghibiglou, C., Martin, H.G.S., and Lai, T.W., Nature Medicine, 2009, vol. 15, no. 12, pp. 1399–1406.

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Karantysh.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Ethical statement. Animal experiments were performed in compliance with the principles of the European Convention for the Protection of Vertebrate Animals used for experiments or other scientific purposes (Strasbourg, March 18, 1986).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karantysh, G.V., Fomenko, M.P., Menzheritskii, A.M. et al. Effect of Pinealon on Learning and Expression of NMDA Receptor Subunit Genes in the Hippocampus of Rats with Experimental Diabetes. Neurochem. J. 14, 314–320 (2020). https://doi.org/10.1134/S181971242003006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971242003006X

Keywords:

Navigation